zoukankan      html  css  js  c++  java
  • UVA 10692 Huge Mod

    Problem X

    Huge Mod 

    Input: standard input

    Output: standard output

    Time Limit: 1 second

    2^3^4^5 mod 10 = ?The operator for exponentiation is different from the addition, subtraction, multiplication or division operators in the sense that the default associativity for exponentiation goes right to left instead of left to right. So unless we mess it up by placing parenthesis, 2^3^2 should mean2^(3^2)=2^9=512 not (2^3)^2=8^2=64. This leads to the obvious fact that if we take the levels of exponents higher (i.e., 2^3^4^5^3), the numbers can become quite big. But let's not make life miserable. We being the good guys would force the ultimate value to be no more than 10000.

    Given a1, a2, a3, ... , aN and m(=10000)
    you only need to compute a1^a2^a3^...^aN mod m.

    Input

    There can be multiple (not more than 100) test cases. Each test case will be presented in a single line. The first line of each test case would contain the value for M(2<=M<=10000). The next number of that line would be N(1<=N<=10). Then N numbers - the values for a1, a2, a3, ... , aN would follow. You can safely assume that 1<=ai<=1000. The end of input is marked by a line containing a single hash ('#') mark.

    Output

    For each of the test cases, print the test case number followed by the value of a1^a2^a3^...^aN mod m on one line. The sample output shows the exact format for printing the test case number.

    Sample Input

    Sample Output

    10 4 2 3 4 5 100 2 5 2 53 3 2 3 2 # 
    Case #1: 2 Case #2: 25 Case #3: 35

    题意:求出 a0^a1^a2......a^n%m的值。

    sl: 以前做过一个a^B mod 1e9+7 的题,那个很显然是费马小定理。碰见这个题目傻逼了。

    百度学习一翻知:A^x=A^(x%phi[[m]+phi[m]) (phi[m]<=x)   很显然一个递归的式子。

    哎,但是当时每次都是对x%phi[MOD] 傻叉了。应该递归求解。 

     坑了我4个点真吭。。。

  • 相关阅读:
    Beego 学习笔记12:文件的操作
    Beego 学习笔记11:文件的上传下载
    Beego 学习笔记10:Easyui使用
    Beego 学习笔记9:Boostrap使用介绍
    Beego 学习比较8:SQL语句
    Beego 学习笔记7:JS分页
    Beego学习笔记6:分页的实现
    【嵌入式linux】用户登录密码验证配置
    【Linux 环境搭建】ubuntu下nfs安装与配置
    【嵌入式 Linux文件系统】如何使用NFS文件系统
  • 原文地址:https://www.cnblogs.com/acvc/p/3702412.html
Copyright © 2011-2022 走看看