zoukankan      html  css  js  c++  java
  • CodeForces 383D Antimatter

    Iahub accidentally discovered a secret lab. He found there n devices ordered in a line, numbered from 1 to n from left to right. Each device i (1 ≤ i ≤ n) can create either ai units of matter or ai units of antimatter.

    Iahub wants to choose some contiguous subarray of devices in the lab, specify the production mode for each of them (produce matter or antimatter) and finally take a photo of it. However he will be successful only if the amounts of matter and antimatter produced in the selected subarray will be the same (otherwise there would be overflowing matter or antimatter in the photo).

    You are requested to compute the number of different ways Iahub can successful take a photo. A photo is different than another if it represents another subarray, or if at least one device of the subarray is set to produce matter in one of the photos and antimatter in the other one.

    Input

    The first line contains an integer n (1 ≤ n ≤ 1000). The second line contains n integers a1, a2, ..., an (1 ≤ ai ≤ 1000).

    The sum a1 + a2 + ... + an will be less than or equal to 10000.

    Output

    Output a single integer, the number of ways Iahub can take a photo, modulo 1000000007 (109 + 7).

    Sample test(s)
    Input
    4
    1 1 1 1
    Output
    12

    提意:给出一串序列,求出序列满足连续且相加和为0的个数。
    sl:背包问题,但是需要在每次以i为末尾节点后更新这个点的初始值把它作为开始节点考虑进去。


     1 #include<cstdio>
     2 #include<cstring>
     3 #include<algorithm>
     4 using namespace std;
     5 const int MAX = 1e3+10;
     6 const int low = 3*10000;
     7 const int MOD = 1e9+7;
     8 const int M = 10000+10;
     9 int a[MAX];
    10 int dp[MAX][2*low];
    11 int main()
    12 {
    13     int n,ans,sum;
    14     while(scanf("%d",&n)==1)
    15     {
    16         sum=0;
    17         for(int i=0;i<n;i++) scanf("%d",&a[i]);
    18         memset(dp,0,sizeof(dp));
    19         dp[0][low]=1;
    20         for(int i=1;i<=n;i++)
    21         {
    22             for(int j=-M;j<=M;j++)
    23             {
    24                 dp[i][j+low]=(dp[i-1][j+low+a[i-1]]+dp[i-1][j+low-a[i-1]])%MOD;
    25             }
    26             sum=(sum+dp[i][low])%MOD;
    27             dp[i][low]++;
    28         }
    29         printf("%d ",sum%MOD);
    30     }
    31 }



  • 相关阅读:
    测试类型
    测试方法
    测试评估
    测试过程
    测试用例设计方法之等价类划分法
    笔记 asp.net (写给自己的。。。)
    笔记 php (写给自己的。。。)
    Session_Start和Session_End
    笔记 javascript 写给自己的(未完。。。)
    BUTTON标签和INPUT标签的区别
  • 原文地址:https://www.cnblogs.com/acvc/p/3703768.html
Copyright © 2011-2022 走看看