zoukankan      html  css  js  c++  java
  • 欧拉函数知识点

    欧拉函数:

    1.对正整数n,欧拉函数是小于n且和n互质的正整数(包括1)的个数。

    例如Euler(8)=4,因为1,3,5,7均和8互质

    2.φ(n) = n*(1-1/p1)*(1-1/p2)*......(1-1/pn)  

    其中(p1.....pn)为N的素因子

    3.欧拉函数的性质

    ① N是不为0的整数。φ(1)=1(唯一和1互质的数就是1本身)

    ② 除了N=2,φ(N)都是偶数.

    ③ 小于N且与N互质的所有数的和是φ(n)*n/2。

    ④ 欧拉函数是积性函数——若m,n互质,φ(m*n)=φ(m)*φ(n)。

    ⑤ 当N为奇数时,φ(2*N)=φ(N)

    ⑥ 若N是质数p的k次幂,φ(N)=p^k-p^(k-1)=(p-1)p^(k-1),

    因为除了p的倍数外,其他数都跟N互质。

    ⑦ 当N是质数时,φ(N) = N-1

    8.

    欧拉函数求法:

    1.直接根据公式求

     1 ll Euler(ll n)
     2 {
     3     ll tmp=n,ans=n;
     4     for(ll i=2;i*i<=tmp;++i)
     5      if(tmp%i==0)
     6      {
     7          ans=ans/i*(i-1);
     8          while(tmp%i==0) tmp/=i;
     9      }
    10     if(tmp>1) ans=ans/tmp*(tmp-1);
    11     //最后只剩下小于4的素数或者n本身就是素数
    12     return ans;
    13 }

    2.然当n比较大的时候用打表访问比较快,下面是筛选法打欧拉函数表 

     1 void init()
     2 {
     3     for(int i = 1 ; i <= MAXN ; i++)
     4         a[i] = i;
     5     a[1] = 0;
     6     for(int i = 1 ; i <= MAXN ; i++)
     7     {
     8         if(a[i] == i)
     9         {
    10             for(int j = i ; j <= MAXN ; j += i)
    11                 a[j] = a[j] / i * (i - 1);
    12         }
    13     }
    14 }

     例题:

    Relatives
    Time Limit: 1000MS        Memory Limit: 65536K
    Description
    Given n, a positive integer, how many positive integers less than n are relatively prime to n? Two integers a and b are relatively prime if there are no integers x > 1, y > 0, z > 0 such that a = xy and b = xz.
    Input
    There are several test cases. For each test case, standard input contains a line with n <= 1,000,000,000. A line containing 0 follows the last case.
    Output
    For each test case there should be single line of output answering the question posed above.
    Sample Input
    7
    12
    0
    Sample Output
    6
    4
    Source
    Waterloo local 2002.07.01
    题面

    裸的欧拉函数。

     1 #include<algorithm>
     2 #include<iostream>
     3 #include<cstring>
     4 #include<string>
     5 #include<cstdio>
     6 #include<cmath>
     7 #define ll long long
     8 using namespace std;
     9 ll n;
    10 ll Euler(ll n)
    11 {
    12     ll tmp=n,ans=n;
    13     for(ll i=2;i*i<=n;++i)
    14     if(tmp%i==0)
    15     {
    16         ans=ans*(i-1)/i;
    17         while(tmp%i==0) tmp/=i;
    18     }
    19     if(tmp>1) ans=ans*(tmp-1)/tmp;
    20     return ans;
    21 }
    22 int main()
    23 {
    24     while(scanf("%lld",&n)!=EOF)
    25     {
    26         if(n==0) break;
    27         printf("%lld
    ",Euler(n));
    28     }
    29     fclose(stdin);fclose(stdout);
    30     return 0;
    31 }
    代码
  • 相关阅读:
    Redis 优化之 tcp-backlog
    linux下生成带符号的随机密码
    mysqldump导出sql文件中insert多行问题
    /usr/lib64/python2.6/site-packages/cryptography/__init__.py:26: DeprecationWarning: Python 2.6 is no longer supported by the Python core team
    ldconfig: /usr/lib/libpython2.6.so.1.0-gdb.py is not an ELF file
    [Errno 14] problem making ssl connection Trying other mirror.
    docker commit 显示“invalid reference format”
    (转)从Python的0.1输出0.1000000000000001说浮点数的二进制
    mysql中replicate_wild_do_table和replicate_do_db区别
    ipsec验证xl2tpd报错:handle_packet: bad control packet!
  • 原文地址:https://www.cnblogs.com/adelalove/p/8634437.html
Copyright © 2011-2022 走看看