zoukankan      html  css  js  c++  java
  • 脏读、不可重复读 共享锁、悲观锁 和 事务五种隔离级别

    一、脏读、不可重复读、幻读

    1、脏读:脏读就是指当一个事务正在访问数据,并且对数据进行了修改,而这种修改还没有提交到数据库中,这时,另外一个事务也访问这个数据,然后使用了这个数据。
    例如:
      张三的工资为5000,事务A中把他的工资改为8000,但事务A尚未提交。
      与此同时,
      事务B正在读取张三的工资,读取到张三的工资为8000。
      随后,
      事务A发生异常,而回滚了事务。张三的工资又回滚为5000。
      最后,
      事务B读取到的张三工资为8000的数据即为脏数据,事务B做了一次脏读。

    2、不可重复读:是指在一个事务内,多次读同一数据。在这个事务还没有结束时,另外一个事务也访问该同一数据。那么,在第一个事务中的两次读数据之间,由于第二个事务的修改,那么第一个事务两次读到的的数据可能是不一样的。这样就发生了在一个事务内两次读到的数据是不一样的,因此称为是不可重复读。
    例如:
      在事务A中,读取到张三的工资为5000,操作没有完成,事务还没提交。
      与此同时,
      事务B把张三的工资改为8000,并提交了事务。
      随后,
      在事务A中,再次读取张三的工资,此时工资变为8000。在一个事务中前后两次读取的结果并不致,导致了不可重复读。

    3、幻读:是指当事务不是独立执行时发生的一种现象,例如第一个事务对一个表中的数据进行了修改,这种修改涉及到表中的全部数据行。同时,第二个事务也修改这个表中的数据,这种修改是向表中插入一行新数据。那么,以后就会发生操作第一个事务的用户发现表中还有没有修改的数据行,就好象发生了幻觉一样。
    例如:
      目前工资为5000的员工有10人,事务A读取所有工资为5000的人数为10人。
      此时,
      事务B插入一条工资也为5000的记录。
      这是,事务A再次读取工资为5000的员工,记录为11人。此时产生了幻读。

    4、提醒
    不可重复读的重点是修改:
    同样的条件,你读取过的数据,再次读取出来发现值不一样了
    幻读的重点在于新增或者删除:
    同样的条件,第 1 次和第 2 次读出来的记录数不一样

    二、独占锁、共享锁、更新锁,乐观锁、悲观锁

    1、锁的两种分类方式

    (1)从数据库系统的角度来看,锁分为以下三种类型:

     独占锁(Exclusive Lock)
          独占锁锁定的资源只允许进行锁定操作的程序使用,其它任何对它的操作均不会被接受。执行数据更新命令,即INSERT、 UPDATE 或DELETE 命令时,SQL Server 会自动使用独占锁。但当对象上有其它锁存在时,无法对其加独占锁。独占锁一直到事务结束才能被释放。
     共享锁(Shared Lock)
          共享锁锁定的资源可以被其它用户读取,但其它用户不能修改它。在SELECT 命令执行时,SQL Server 通常会对对象进行共享锁锁定。通常加共享锁的数据页被读取完毕后,共享锁就会立即被释放。
     更新锁(Update Lock)
          更新锁是为了防止死锁而设立的。当SQL Server 准备更新数据时,它首先对数据对象作更新锁锁定,这样数据将不能被修改,但可以读取。等到SQL Server 确定要进行更新数据操作时,它会自动将更新锁换为独占锁。但当对象上有其它锁存在时,无法对其作更新锁锁定。

    (2)从程序员的角度看,锁分为以下两种类型:

    悲观锁(Pessimistic Lock)
          悲观锁,正如其名,它指的是对数据被外界(包括本系统当前的其他事务,以及来自外部系统的事务处理)修改持保守态度,因此在整个数据处理过程中,将数据处于锁定状态。悲观锁的实现,往往依靠数据库提供的锁机制(也只有数据库层提供的锁机制才能真正保证数据访问的排他性,否则,即使在本系统中实现了加锁机制,也无法保证外部系统不会修改数据)。

    乐观锁(Optimistic Lock)
          相对悲观锁而言,乐观锁机制采取了更加宽松的加锁机制。悲观锁大多数情况下依靠数据库的锁机制实现,以保证操作最大程度的独占性。但随之而来的就是数据库性能的大量开销,特别是对长事务而言,这样的开销往往无法承受。
          而乐观锁机制在一定程度上解决了这个问题。乐观锁,大多是基于数据版本( Version )记录机制实现。何谓数据版本?即为数据增加一个版本标识,在基于数据库表的版本解决方案中,一般是通过为数据库表增加一个 “version” 字段来实现。读取出数据时,将此版本号一同读出,之后更新时,对此版本号加一。此时,将提交数据的版本数据与数据库表对应记录的当前版本信息进行比对,如果提交的数据版本号大于数据库表当前版本号,则予以更新,否则认为是过期数据。

    2、数据库中如何使用锁

    首先从悲观锁开始说。在SqlServer等其余很多数据库中,数据的锁定通常采用页级锁的方式,也就是说对一张表内的数据是一种串行化的更新插入机制,在任何时间同一张表只会插1条数据,别的想插入的数据要等到这一条数据插完以后才能依次插入。带来的后果就是性能的降低,在多用户并发访问的时候,当对一张表进行频繁操作时,会发现响应效率很低,数据库经常处于一种假死状态。而Oracle用的是行级锁,只是对想锁定的数据才进行锁定,其余的数据不相干,所以在对Oracle表中并发插数据的时候,基本上不会有任何影响。

    注:对于悲观锁是针对并发的可能性比较大,而一般在我们的应用中用乐观锁足以。

    Oracle的悲观锁需要利用一条现有的连接,分成两种方式,从SQL语句的区别来看,就是一种是for update,一种是for update nowait的形式。

    比如我们看一个例子。首先建立测试用的数据库表:

    CREATE TABLE TEST(ID,NAME,LOCATION,VALUE,CONSTRAINT test_pk PRIMARY KEY(ID))AS SELECT deptno, dname, loc, 1 FROM scott.dept

    这里我们利用了Oracle的Sample的scott用户的表,把数据copy到我们的test表中。

    (1)for update 形式介绍

    然后我们看一下for update锁定方式。我们执行如下的select for update语句:

    select * from test where id = 10 for update

    通过这条检索语句锁定以后,再开另外一个sql*plus窗口进行操作,再把上面这条sql语句执行一便,你会发现sqlplus好像死在那里了,好像检索不到数据的样子,但是也不返回任何结果,就属于卡在那里的感觉。这个时候是什么原因呢,就是一开始的第一个Session中的select for update语句把数据锁定住了。由于这里锁定的机制是wait的状态(只要不表示nowait那就是wait),所以第二个Session(也就是卡住的那个sql*plus)中当前这个检索就处于等待状态。当第一个session最后commit或者rollback之后,第二个session中的检索结果就是自动跳出来,并且也把数据锁定住。

    不过如果你第二个session中你的检索语句如下所示:select * from test where id = 10,也就是没有for update这种锁定数据的语句的话,就不会造成阻塞了。

    (2)for update nowait 形式介绍

    另外一种情况,就是当数据库数据被锁定的时候,也就是执行刚才for update那条sql以后,我们在另外一个session中执行for update nowait后又是什么样呢。
    比如如下的sql语句:

    select * from test where id = 10 for update nowait

    由于这条语句中是制定采用nowait方式来进行检索,所以当发现数据被别的session锁定中的时候,就会迅速返回ORA-00054错误,内容是资源正忙, 但指定以 NOWAIT 方式获取资源。所以在程序中我们可以采用nowait方式迅速判断当前数据是否被锁定中,如果锁定中的话,就要采取相应的业务措施进行处理。

    那这里另外一个问题,就是当我们锁定住数据的时候,我们对数据进行更新和删除的话会是什么样呢。

    比如同样,我们让第一个Session锁定住id=10的那条数据,我们在第二个session中执行如下语句:

    update test set value=2 where id = 10

    这个时候我们发现update语句就好像select for update语句一样也停住卡在这里,当你第一个session放开锁定以后update才能正常运行。当你update运行后,数据又被你update 语句锁定住了,这个时候只要你update后还没有commit,别的session照样不能对数据进行锁定更新等等。

    总之,Oracle中的悲观锁就是利用Oracle的Connection对数据进行锁定。在Oracle中,用这种行级锁带来的性能损失是很小的,只是要注意程序逻辑,不要给你一不小心搞成死锁了就好。而且由于数据的及时锁定,在数据提交时候就不呼出现冲突,可以省去很多恼人的数据冲突处理。缺点就是你必须要始终有一条数据库连接,就是说在整个锁定到最后放开锁的过程中,你的数据库联接要始终保持住。

    与悲观锁相对的,我们有了乐观锁。乐观锁一开始也说了,就是一开始假设不会造成数据冲突,在最后提交的时候再进行数据冲突检测。

    在乐观锁中,我们有3种常用的做法来实现:

    a. 在数据取得的时候把整个数据都copy到应用中,在进行提交的时候比对当前数据库中的数据和开始的时候更新前取得的数据。
        当发现两个数据一模一样以后,就表示没有冲突可以提交,否则则是并发冲突,需要去用业务逻辑进行解决。

    b. 乐观锁的做法就是采用版本戳,这个在Hibernate中得到了使用。
        采用版本戳的话,首先需要在你有乐观锁的数据库table上建立一个新的column,比如为number型,当你数据每更新一次的时候,版本数就会往上增加1。
        比如同样有2个session同样对某条数据进行操作。两者都取到当前的数据的版本号为1,当第一个session进行数据更新后,在提交的时候查看到当前数据的版本还为1,和自己一开始取到的版本相同。就正式提交,然后把版本号增加1,这个时候当前数据的版本为2。当第二个session也更新了数据提交的时候,发现数据库中版本为2,和一开始这个session取到的版本号不一致,就知道别人更新过此条数据,这个时候再进行业务处理,比如整个Transaction都Rollback等等操作。
        在用版本戳的时候,可以在应用程序侧使用版本戳的验证,也可以在数据库侧采用Trigger(触发器)来进行验证。不过数据库的Trigger的性能开销还是比较的大,所以能在应用侧进行验证的话还是推荐不用Trigger。

    c. 第三种做法和第二种做法有点类似,就是也新增一个Table的Column,不过这次这个column是采用timestamp型,存储数据最后更新的时间。
        在Oracle9i以后可以采用新的数据类型,也就是timestamp with time zone类型来做时间戳。这种Timestamp的数据精度在Oracle的时间类型中是最高的,精确到微秒(还没与到纳秒的级别),一般来说,加上数据库处理时间和人的思考动作时间,微秒级别是非常非常够了,其实只要精确到毫秒甚至秒都应该没有什么问题。
        和刚才的版本戳类似,也是在更新提交的时候检查当前数据库中数据的时间戳和自己更新前取到的时间戳进行对比,如果一致则OK,否则就是版本冲突。如果不想把代码写在程序中或者由于别的原因无法把代码写在现有的程序中,也可以把这个时间戳乐观锁逻辑写在Trigger或者存储过程中。

    三、事务五种隔离级别

    Isolation 属性一共支持五种事务设置,具体介绍如下:
    (1)DEFAULT
      使用数据库设置的隔离级别(默认),由DBA 默认的设置来决定隔离级别。
    (2)READ_UNCOMMITTED
      这是事务最低的隔离级别,它充许别外一个事务可以看到这个事务未提交的数据。
      会出现脏读、不可重复读、幻读 (隔离级别最低,并发性能高)。
    (3)READ_COMMITTED
      保证一个事务修改的数据提交后才能被另外一个事务读取。另外一个事务不能读取该事务未提交的数据。
      可以避免脏读,但会出现不可重复读、幻读问题(锁定正在读取的行)。
    (4)REPEATABLE_READ
      可以防止脏读、不可重复读,但会出幻读(锁定所读取的所有行)。
    (5)SERIALIZABLE
      这是花费最高代价但是最可靠的事务隔离级别,事务被处理为顺序执行。
      保证所有的情况不会发生(锁表)。

    四、c# 事务原理

    企业级的数据库每一秒钟都可能应付成千上万的并发访问,因而带来了并发控制的问题。由数据库理论可知,由于并发访问,在不可预料的时刻可能引发如下几个可以预料的问题:
      脏读:包含未提交数据的读取。例如,事务1 更改了某行。事务2 在事务1 提交更改之前读取已更改的行。如果事务1 回滚更改,则事务2 便读取了逻辑上从未存在过的行。
      不可重复读取:当某个事务不止一次读取同一行,并且一个单独的事务在两次(或多次)读取之间修改该行时,因为在同一个事务内的多次读取之间修改了该行,所以每次读取都生成不同值,从而引发不一致问题。
      幻象:通过一个任务,在以前由另一个尚未提交其事务的任务读取的行的范围中插入新行或删除现有行。带有未提交事务的任务由于该范围中行数的更改而无法重复其原始读取。

    如你所想,这些情况发生的根本原因都是因为在并发访问的时候,没有一个机制避免交叉存取所造成的。而隔离级别的设置,正是为了避免这些情况的发生。事务准备接受不一致数据的级别称为隔离级别。隔离级别是一个事务必须与其它事务进行隔离的程度。较低的隔离级别可以增加并发,但代价是降低数据的正确性。相反,较高的隔离级别可以确保数据的正确性,但可能对并发产生负面影响。

    根据隔离级别的不同,DBMS为并行访问提供不同的互斥保证。在SQL Server数据库中,提供四种隔离级别:未提交读、提交读、可重复读、可串行读。这四种隔离级别可以不同程度地保证并发的数据完整性: 

    隔离级别 脏 读 不可重复读取 幻 像
    未提交读
    提交读
    可重复读
    可串行读

     

    可以看出,“可串行读”提供了最高级别的隔离,这时并发事务的执行结果将与串行执行的完全一致。如前所述,最高级别的隔离也就意味着最低程度的并发,因此,在此隔离级别下,数据库的服务效率事实上是比较低的。尽管可串行性对于事务确保数据库中的数据在所有时间内的正确性相当重要,然而许多事务并不总是要求完全的隔离。例如,多个作者工作于同一本书的不同章节。新章节可以在任意时候提交到项目中。但是,对于已经编辑过的章节,没有编辑人员的批准,作者不能对此章节进行任何更改。这样,尽管有未编辑的新章节,但编辑人员仍可以确保在任意时间该书籍项目的正确性。编辑人员可以查看以前编辑的章节以及最近提交的章节。这样,其它的几种隔离级别也有其存在的意义。

    在.net框架中,事务的隔离级别是由枚举System.Data.IsolationLevel所定义的:

    [Flags]
    [Serializable]
    public enum IsolationLevel

    其成员及相应的含义如下:

    成 员 含 义
    Chaos 无法改写隔离级别更高的事务中的挂起的更改。
    ReadCommitted 在正在读取数据时保持共享锁,以避免脏读,但是在事务结束之前可以更改数据,从而导致不可重复的读取或幻像数据。
    ReadUncommitted 可以进行脏读,意思是说,不发布共享锁,也不接受独占锁。
    RepeatableRead 在查询中使用的所有数据上放置锁,以防止其他用户更新这些数据。防止不可重复的读取,但是仍可以有幻像行。
    Serializable 在DataSet上放置范围锁,以防止在事务完成之前由其他用户更新行或向数据集中插入行。
    Unspecified 正在使用与指定隔离级别不同的隔离级别,但是无法确定该级别。

    显而意见,数据库的四个隔离级别在这里都有映射。

    默认的情况下,SQL Server使用ReadCommitted(提交读)隔离级别。

    关于隔离级别的最后一点就是如果你在事务执行的过程中改变了隔离级别,那么后面的命名都在最新的隔离级别下执行——隔离级别的改变是立即生效的。有了这一点,你可以在你的事务中更灵活地使用隔离级别从而达到更高的效率和并发安全性。

    转载:http://cupoy.iteye.com/blog/251796
            http://luijnijei.blog.163.com/blog/static/35024594201061485547777/
            http://hi.baidu.com/eredlab/blog/item/13d84ef4896207cdf3d385fc.html
            http://pengzong155.blog.163.com/blog/static/104028160200912073636329/

  • 相关阅读:
    7.Layout布局(tabs、accordion、layout)
    6.form表单四种提交方式
    5.form表单验证
    4.easyloader.js文件的作用
    3.window窗口
    2.panel面板
    1.messager消息提示框
    2017-10-5-Python
    2017-9-24-Linux移植:ubuntu server 16.04无法联网&无法apt-get update解决
    2017-9-17-EDFA
  • 原文地址:https://www.cnblogs.com/adforce/p/2021929.html
Copyright © 2011-2022 走看看