zoukankan      html  css  js  c++  java
  • HanLP-实词分词器详解

    在进行文本分类(非情感分类)时,我们经常只保留实词(名、动、形)等词,为了文本分类的分词方便,HanLP专门提供了实词分词器类NotionalTokenizer,同时在分类数据集加载处理时,默认使用了NotionalTokenizer分词器。

    HanLPJava版代码库中可以查看下边的文件中的函数

    1、AbstractDataSet.java文件中的AbstractDataSet方法

    2、HanLPTokenizer.java文件中的segment方法

    3、NotionalTokenizer.java文件中的segment方法

    简单说明一下NotionalTokenizer类实现

    1、初始化了一个维特比分词器实例(最短路径方法,用viterbi思想实现)

    2、CoreStopWordDictionary类的shouldInclude方法对维特比分词结果进行过滤,该方法只保留属于名词、动词、副词、形容词并且不在停用词表中的词。详见CoreStopWordDictionary.java文件中的shouldInclude(Term)方法。

    对于PyHanLP的调用方法可以参考

    # # -*- coding:utf-8 -*-

    # Author:wancong

    # Date: 2018-04-30

    from pyhanlp import *

    def demo_notional_tokenizer():

        """ 演示自动去除停用词、自动断句的分词器

        >>> demo_notional_tokenizer()

        [小区/n, 居民/n, 反对/v, 喂养/v, 流浪猫/nz, 居民/n, 赞成/v, 喂养/v, 小宝贝/nz]

        [小区/n, 居民/n, 反对/v, 喂养/v, 流浪猫/nz]

        [居民/n, 赞成/v, 喂养/v, 小宝贝/nz]

        """

        Term =JClass("com.hankcs.hanlp.seg.common.Term")

        NotionalTokenizer = JClass("com.hankcs.hanlp.tokenizer.NotionalTokenizer")

        text = "小区居民有的反对喂养流浪猫,而有的居民却赞成喂养这些小宝贝"

        print(NotionalTokenizer.segment(text))

        for sentence in NotionalTokenizer.seg2sentence(text):

            print(sentence)

    if __name__ == "__main__":

        import doctest

    doctest.testmod(verbose=True)

  • 相关阅读:
    VSCode编辑器在开发时常用的插件
    表单的数据校验规则及使用记录
    Vuex的插件保持状态持久化
    VueCli3项目中模拟数据及配置代理转发
    CSS 模块化
    Vue中静态地址的使用方式
    Vue中自动化引入样式及组件样式穿透
    Vue中的全局混入或局部混入
    让IE6 IE7 IE8 IE9 IE10 IE11支持Bootstrap的解决方法
    刚学玩原生JS,自己写了一个小游戏,希望在以后能不断地进步加以改善
  • 原文地址:https://www.cnblogs.com/adnb34g/p/10929241.html
Copyright © 2011-2022 走看看