http://blog.csdn.net/zxpddfg/article/details/45912561(二维高斯滤波可分离计算实现)
http://blog.csdn.net/sulanqing/article/details/42744291(OpenCv高斯滤波源码分析)
计算高速滤波核
void CreatGauss1D(double sigma, double *pdKernel, int &pnWidowSize) { LONG i; int nCenter;//数组中心点 double dDis;//数组中一点到中心点距离 //中间变量 double dValue; double dSum; dSum = 0; pnWidowSize = 1 + 2 * ceil(3 * sigma);// [-3*sigma,3*sigma] 以内数据,会覆盖绝大部分滤波系数 //double temp0 = -0.5 / (sigma*sigma); //double temp1 = 1.0 / (sqrt(2 * 3.1415926)*sigma); nCenter = pnWidowSize / 2; //生成高斯数据 for (i = 0; i < pnWidowSize; i++) { dDis = (double)(i - nCenter); //dValue = exp(dDis*dDis * temp0) * temp1 ; dValue = exp(-(1.0 / 2)*dDis*dDis / (sigma*sigma)) / (sqrt(2 * 3.1415926)*sigma); pdKernel[i] = dValue; dSum += dValue; } //归一化 for (i = 0; i < pnWidowSize; i++) { pdKernel[i] /= dSum; pdKernel[i] *= 255; } } void CreatGauss2D(double sigma, double **pdKernel, int pnWidowSize) { LONG i; int nCenter;//数组中心点 double dDisx, dDisy;//数组中一点到中心点距离 //中间变量 double dValue; double dSum; dSum = 0; nCenter = pnWidowSize / 2; //生成2D高斯数据 for (i = 0; i < pnWidowSize; i++) { dDisy = (double)(i - nCenter); for (int j = 0; j < pnWidowSize; ++j) { dDisx = (double)(j - nCenter); dValue = exp(-0.5*(dDisx*dDisx + dDisy*dDisy) / (sigma*sigma)) / (2 * 3.1415926*sigma*sigma); pdKernel[i][j] = dValue; dSum += dValue; } } //归一化 for (i = 0; i < pnWidowSize; i++) { for (int j = 0; j < pnWidowSize; ++j) { pdKernel[i][j] /= dSum; pdKernel[i][j] *= 255; } } }