(1) 最简单的神经网络分类器
# encoding: UTF-8 import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data as mnist_data print("Tensorflow version " + tf.__version__) print(tf.__path__) tf.set_random_seed(0) # 输入mnist数据 mnist = mnist_data.read_data_sets("data", one_hot=True) #输入数据 x = tf.placeholder("float", [None, 784]) y_ = tf.placeholder("float", [None,10]) #权值输入 W = tf.Variable(tf.zeros([784,10])) b = tf.Variable(tf.zeros([10])) #神经网络输出 y = tf.nn.softmax(tf.matmul(x,W) + b) #设置交叉熵 cross_entropy = -tf.reduce_sum(y_*tf.log(y)) #设置训练模型 learningRate = 0.005 train_step = tf.train.GradientDescentOptimizer(learningRate).minimize(cross_entropy) init = tf.initialize_all_variables() sess = tf.Session() sess.run(init) itnum = 1000; batch_size = 100; for i in range(itnum): print("the index " + str(i + 1) + " train") batch_xs, batch_ys = mnist.train.next_batch(batch_size) sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys}) correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) print sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels})
(2) 单层Softmax分类器与CNN多层分类器
#coding=utf-8 #mnist程序实现与优化 #author: maddock #date: 2017.9.26 #reference: #http://www.tensorfly.cn/tfdoc/tutorials/mnist_pros.html #http://www.cnblogs.com/shihuc/p/6648130.html #http://blog.csdn.net/wspba/article/details/54311566(mnist数据解析) #http://blog.csdn.net/daska110/article/details/71630135 TensorFlow入门+MNIST运行的理解 import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data as mnist_data print("Tensorflow version " + tf.__version__) print(tf.__path__) tf.set_random_seed(0) # 输入mnist数据 mnist = mnist_data.read_data_sets("data", one_hot=True) sess = tf.InteractiveSession() ############################################################################################## print("构建Softmax 回归模型 ") print("train num: ", mnist.train.images.shape[0]," image size ", mnist.train.images.shape[1]) print("test num: ", mnist.test.images.shape[0]," image size ", mnist.test.images.shape[1]) #这里的x和y并不是特定的值,相反,他们都只是一个占位符,可以在TensorFlow运行某一计算时根据该占位符输入具体的值。 x = tf.placeholder("float", shape=[None, 784]) y_ = tf.placeholder("float", shape=[None, 10]) W = tf.Variable(tf.zeros([784,10])) b = tf.Variable(tf.zeros([10])) sess.run(tf.global_variables_initializer()) y = tf.nn.softmax(tf.matmul(x,W) + b) cross_entropy = -tf.reduce_sum(y_*tf.log(y)) train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy) #每一步迭代,我们都会加载50个训练样本,然后执行一次train_step,并通过feed_dict将x 和 y_张量占位符用训练训练数据替代。 for i in range(1000): batch = mnist.train.next_batch(50) train_step.run(feed_dict={x: batch[0], y_: batch[1]}) correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) print("max test accuracy: ",accuracy.eval(feed_dict={x: mnist.test.images, y_: mnist.test.labels})) ########################################################################### print(" 构建一个多层卷积网络") def weight_variable(shape): initial = tf.truncated_normal(shape, stddev=0.1) return tf.Variable(initial) def bias_variable(shape): initial = tf.constant(0.1, shape=shape) return tf.Variable(initial) #http://blog.csdn.net/mao_xiao_feng/article/details/78004522 def conv2d(x, W): return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME') #http://blog.csdn.net/mao_xiao_feng/article/details/53453926 def max_pool_2x2(x): return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') #设置第一层的权值 W_conv1 = weight_variable([5, 5, 1, 32]) b_conv1 = bias_variable([32]) #把输入数据变成与w矩阵同纬度的矩阵 x_image = tf.reshape(x, [-1,28,28,1]) h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1) h_pool1 = max_pool_2x2(h_conv1) #设置第二层的权值 W_conv2 = weight_variable([5, 5, 32, 64]) b_conv2 = bias_variable([64]) h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2) h_pool2 = max_pool_2x2(h_conv2) #设置全连接层1的权值 W_fc1 = weight_variable([7 * 7 * 64, 1024]) b_fc1 = bias_variable([1024]) h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64]) h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1) keep_prob = tf.placeholder("float") h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob) #设置全连接层2的权值 W_fc2 = weight_variable([1024, 10]) b_fc2 = bias_variable([10]) #输出预测的分类 y_conv=tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2) cross_entropy = -tf.reduce_sum(y_*tf.log(y_conv)) train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy) correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) sess.run(tf.initialize_all_variables()) for i in range(20000): batch = mnist.train.next_batch(50) if i%100 == 0: train_accuracy = accuracy.eval(feed_dict={ x:batch[0], y_: batch[1], keep_prob: 1.0}) print ("step %d, training accuracy %g"%(i, train_accuracy)) train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5}) print ("test accuracy %g"%accuracy.eval(feed_dict={ x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))
参考 http://www.tensorfly.cn/tfdoc/tutorials/mnist_pros.html
http://blog.csdn.net/mpk_no1/article/details/72855977 (结构不错)