zoukankan      html  css  js  c++  java
  • TensorFlow基础笔记(2) minist分类学习

    (1) 最简单的神经网络分类器

    # encoding: UTF-8
    import tensorflow as tf
    from tensorflow.examples.tutorials.mnist import input_data as mnist_data
    print("Tensorflow version " + tf.__version__)
    print(tf.__path__)
    
    tf.set_random_seed(0)
    
    # 输入mnist数据
    mnist = mnist_data.read_data_sets("data", one_hot=True)
    
    #输入数据
    x = tf.placeholder("float", [None, 784])
    y_ = tf.placeholder("float", [None,10])
    
    #权值输入
    W = tf.Variable(tf.zeros([784,10]))
    b = tf.Variable(tf.zeros([10]))
    #神经网络输出
    y = tf.nn.softmax(tf.matmul(x,W) + b)
    
    #设置交叉熵
    cross_entropy = -tf.reduce_sum(y_*tf.log(y))
    
    #设置训练模型
    learningRate = 0.005
    train_step = tf.train.GradientDescentOptimizer(learningRate).minimize(cross_entropy)
    
    init = tf.initialize_all_variables()
    sess = tf.Session()
    sess.run(init)
    
    itnum = 1000;
    batch_size = 100;
    for i in range(itnum):
        print("the index " + str(i + 1) + " train")
        batch_xs, batch_ys = mnist.train.next_batch(batch_size)
        sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})
    
    correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
    print sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels})

     (2) 单层Softmax分类器与CNN多层分类器

    #coding=utf-8
    
    #mnist程序实现与优化
    #author: maddock
    #date: 2017.9.26
    #reference:
    #http://www.tensorfly.cn/tfdoc/tutorials/mnist_pros.html
    #http://www.cnblogs.com/shihuc/p/6648130.html
    #http://blog.csdn.net/wspba/article/details/54311566(mnist数据解析)
    #http://blog.csdn.net/daska110/article/details/71630135 TensorFlow入门+MNIST运行的理解
    
    
    import tensorflow as tf
    from tensorflow.examples.tutorials.mnist import input_data as mnist_data
    print("Tensorflow version " + tf.__version__)
    print(tf.__path__)
    
    tf.set_random_seed(0)
    
    # 输入mnist数据
    mnist = mnist_data.read_data_sets("data", one_hot=True)
    
    sess = tf.InteractiveSession()
    
    ##############################################################################################
    print("构建Softmax 回归模型 ")
    print("train num: ", mnist.train.images.shape[0]," image size ", mnist.train.images.shape[1])
    print("test num: ", mnist.test.images.shape[0]," image size ", mnist.test.images.shape[1])
    
    #这里的x和y并不是特定的值,相反,他们都只是一个占位符,可以在TensorFlow运行某一计算时根据该占位符输入具体的值。
    x = tf.placeholder("float", shape=[None, 784])
    y_ = tf.placeholder("float", shape=[None, 10])
    W = tf.Variable(tf.zeros([784,10]))
    b = tf.Variable(tf.zeros([10]))
    
    
    sess.run(tf.global_variables_initializer())
    y = tf.nn.softmax(tf.matmul(x,W) + b)
    cross_entropy = -tf.reduce_sum(y_*tf.log(y))
    train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy)
    
    #每一步迭代,我们都会加载50个训练样本,然后执行一次train_step,并通过feed_dict将x 和 y_张量占位符用训练训练数据替代。
    for i in range(1000):
        batch = mnist.train.next_batch(50)
        train_step.run(feed_dict={x: batch[0], y_: batch[1]})
    
    correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
    print("max test accuracy: ",accuracy.eval(feed_dict={x: mnist.test.images, y_: mnist.test.labels}))
    
    
    ###########################################################################
    print("
    构建一个多层卷积网络")
    
    def weight_variable(shape):
      initial = tf.truncated_normal(shape, stddev=0.1)
      return tf.Variable(initial)
    
    def bias_variable(shape):
      initial = tf.constant(0.1, shape=shape)
      return tf.Variable(initial)
    
    #http://blog.csdn.net/mao_xiao_feng/article/details/78004522
    def conv2d(x, W):
      return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
    
    #http://blog.csdn.net/mao_xiao_feng/article/details/53453926
    def max_pool_2x2(x):
      return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
                            strides=[1, 2, 2, 1], padding='SAME')
    
    
    #设置第一层的权值
    W_conv1 = weight_variable([5, 5, 1, 32])
    b_conv1 = bias_variable([32])
    #把输入数据变成与w矩阵同纬度的矩阵
    x_image = tf.reshape(x, [-1,28,28,1])
    
    h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
    h_pool1 = max_pool_2x2(h_conv1)
    
    #设置第二层的权值
    W_conv2 = weight_variable([5, 5, 32, 64])
    b_conv2 = bias_variable([64])
    
    h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
    h_pool2 = max_pool_2x2(h_conv2)
    
    #设置全连接层1的权值
    W_fc1 = weight_variable([7 * 7 * 64, 1024])
    b_fc1 = bias_variable([1024])
    
    h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
    h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
    
    keep_prob = tf.placeholder("float")
    h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
    
    #设置全连接层2的权值
    W_fc2 = weight_variable([1024, 10])
    b_fc2 = bias_variable([10])
    
    #输出预测的分类
    y_conv=tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)
    
    cross_entropy = -tf.reduce_sum(y_*tf.log(y_conv))
    train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
    correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1))
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
    sess.run(tf.initialize_all_variables())
    for i in range(20000):
      batch = mnist.train.next_batch(50)
      if i%100 == 0:
        train_accuracy = accuracy.eval(feed_dict={
            x:batch[0], y_: batch[1], keep_prob: 1.0})
        print ("step %d, training accuracy %g"%(i, train_accuracy))
      train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})
    
    print ("test accuracy %g"%accuracy.eval(feed_dict={
        x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))

    参考 http://www.tensorfly.cn/tfdoc/tutorials/mnist_pros.html

    http://blog.csdn.net/mpk_no1/article/details/72855977 (结构不错)

  • 相关阅读:
    【深度学习系列1】 深度学习在腾讯的平台化和应用实践
    js复制button在ie下的解决方式
    兔子--Calling startActivity() from outside of an Activity context requires the FLAG_ACTIVITY_NEW_TASK
    UART串口协议基础1
    高校站点群建设方案简单介绍
    oracle10G之前介质下载地址【珍藏版】
    程序猿打新总结 6月份 新股申购秘籍
    斯坦福IOS开发第五课(第一部分)
    O2O领域添新军,正品网加快布局的战略考量
    如风一样,飞翔------Day37
  • 原文地址:https://www.cnblogs.com/adong7639/p/7573048.html
Copyright © 2011-2022 走看看