zoukankan      html  css  js  c++  java
  • TensorFlow基础笔记(9) Tensorboard可视化显示以及查看pb meta模型文件的方法

     参考: http://blog.csdn.net/l18930738887/article/details/55000008

    http://www.jianshu.com/p/19bb60b52dad

    http://blog.csdn.net/sinat_33761963/article/details/62433234

    import tensorflow as tf
    import numpy as np
    def add_layer(inputs, in_size, out_size, n_layer, activation_function=None):
        # add one more layer and return the output of this layer
        layer_name = 'layer%s' % n_layer
        with tf.name_scope(layer_name):
            with tf.name_scope('weights'):
                Weights = tf.Variable(tf.random_normal([in_size, out_size]), name='W')
                tf.summary.histogram(layer_name + '/weights', Weights)
            with tf.name_scope('biases'):
                biases = tf.Variable(tf.zeros([1, out_size]) + 0.1, name='b')
                tf.summary.histogram(layer_name + '/biases', biases)
            with tf.name_scope('Wx_plus_b'):
                Wx_plus_b = tf.add(tf.matmul(inputs, Weights), biases)
            if activation_function is None:
                outputs = Wx_plus_b
            else:
                outputs = activation_function(Wx_plus_b, )
            tf.summary.histogram(layer_name + '/outputs', outputs)
        return outputs
    # Make up some real data
    x_data = np.linspace(-1,1,300)[:, np.newaxis]
    noise = np.random.normal(0, 0.05, x_data.shape)
    y_data = np.square(x_data) - 0.5 + noise
    # define placeholder for inputs to network
    with tf.name_scope('inputs'):
        xs = tf.placeholder(tf.float32, [None, 1],name='input_x')
        ys = tf.placeholder(tf.float32, [None, 1],name='input_y')
    
    # add hidden layer
    l1 = add_layer(xs, 1, 10, n_layer=1, activation_function=tf.nn.relu)
    # add output layer
    prediction = add_layer(l1, 10, 1, n_layer=2, activation_function=None)
    
    
    # the error between prediciton and real data
    with tf.name_scope('loss'):
        loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys - prediction),
                                            reduction_indices=[1]))
        tf.summary.scalar('loss', loss)
    with tf.name_scope('train'):
        train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)
    
    sess = tf.Session()
    merged = tf.summary.merge_all()
    # save the logs
    writer = tf.summary.FileWriter("logs/", sess.graph)
    sess.run(tf.global_variables_initializer())
    for i in range(1000):
        # training
        sess.run(train_step, feed_dict={xs: x_data, ys: y_data})
        if i % 50 == 0:
            # to see the step improvement
            result = sess.run(merged,
                              feed_dict={xs: x_data, ys: y_data})
            writer.add_summary(result, i)

    到运行python的所在目录下,打一下命令:

    $ tensorboard --logdir="logs/"

    再在网页中输入链接:127.0.1.1:6006 即可获得展示: 推荐使用friefox浏览器,我电脑上chrom浏览器打不开

    比如,从他人处获得一个Graph,想看看它的结构,怎么弄?

    Google提供了一个工具,TensorBoard,它能以图表的方式分析你在训练过程中汇总的各种数据,其中包括Graph结构。

    所以我们可以简单的写几行Pyhton,加载Graph,只在logdir里,输出Graph结构数据,并可以查看其图结构。

    可参考:http://www.tensorfly.cn/tfdoc/how_tos/summaries_and_tensorboard.html

    https://www.tensorflow.org/get_started/summaries_and_tensorboard

    代码如下:

    import tensorflow as tf
    from tensorflow.python.platform import gfile
    
    # 这是从二进制格式的pb文件加载模型
    graph = tf.get_default_graph()
    graphdef = graph.as_graph_def()
    graphdef.ParseFromString(gfile.FastGFile("/data/TensorFlowAndroidMNIST/app/src/main/expert-graph.pb", "rb").read())
    _ = tf.import_graph_def(graphdef, name="")
    import tensorflow as tf
    from tensorflow.python.platform import gfile
    #这是从文件格式的meta文件加载模型
    graph = tf.get_default_graph()
    graphdef = graph.as_graph_def()
    # graphdef.ParseFromString(gfile.FastGFile("/data/TensorFlowAndroidMNIST/app/src/main/expert-graph.pb", "rb").read())
    # _ = tf.import_graph_def(graphdef, name="")
    _ = tf.train.import_meta_graph("./InsightFace_iter_best_1950000.ckpt.meta")
    summary_write = tf.summary.FileWriter("./" , graph)

    然后再启动tensorboard:

    tensorboard --logdir /data/TensorFlowAndroidMNIST/logdir --host 你的ip --port 你端口(默认6006)

    一个打开pb文件的实例

    import tensorflow as tf
    from tensorflow.python.platform import gfile
    
    graph = tf.get_default_graph()
    graphdef = graph.as_graph_def()
    graphdef.ParseFromString(gfile.FastGFile("./log/mtcnn.pb", "rb").read())
    _ = tf.import_graph_def(graphdef, name="")
    
    summary_write = tf.summary.FileWriter("./log" , graph)
  • 相关阅读:
    剑指offer39-平衡二叉树
    剑指offer37-数字在排序数组中出现的次数
    剑指offer36-两个链表的第一个公共结点
    剑指offer31-整数中1出现的次数
    剑指offer30-连续子数组的最大和
    剑指offer28-数组中出现次数超过一半的数字
    剑指offer26-二叉搜索树与双向链表
    剑指offer21-栈的压入、弹出序列
    剑指offer16-合并两个排序的链表
    C#-杂碎
  • 原文地址:https://www.cnblogs.com/adong7639/p/7815083.html
Copyright © 2011-2022 走看看