斐波那契数列的定义如下:
F(0) = 0
F(1) = 1
F(n) = F(n - 1) + F(n - 2) (n >= 2)
(1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, ...)
给出n,求F(n),由于结果很大,输出F(n) % 1000000009的结果即可。
Input
输入1个数n(1 <= n <= 10^18)。
Output
输出F(n) % 1000000009的结果。
Sample Input
11
Sample Output
89
思路:一道矩阵快速幂的模板题,这两天写一个博客再更新次题解。
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int MOD=1000000009;
struct mat
{
ll a[2][2];
};
mat mat_mul(mat x,mat y)
{
mat res;
memset(res.a,0,sizeof(res.a));
for(int i=0;i<2;i++)
for(int j=0;j<2;j++)
for(int k=0;k<2;k++)
res.a[i][j]=(res.a[i][j]+x.a[i][k]*y.a[k][j])%MOD;
return res;
}
void mat_pow(ll n)
{
mat c,res;
c.a[0][0]=c.a[0][1]=c.a[1][0]=1;
c.a[1][1]=0;
memset(res.a,0,sizeof(res.a));
for(int i=0;i<2;i++) res.a[i][i]=1;
while(n)
{
if(n&1) res=mat_mul(res,c);
c=mat_mul(c,c);
n=n>>1;
}
printf("%I64d
",res.a[0][1]);
}
int main()
{
ll n;
scanf("%lld",&n);
mat_pow(n);
return 0;
}