zoukankan      html  css  js  c++  java
  • 分组函数

    组函数类型

    avg

    count

    max

    min

    sum

    select avg(salary),max(salary),min(salary),sum(salary) from employees;
    AVG(SALARY) MAX(SALARY) MIN(SALARY) SUM(SALARY)
    ----------- ----------- ----------- -----------
    6461.682243       24000        2100      691400 

    --count(e) 返回e不为空的记录总数

    select count(employee_id),count(last_name),count(hire_date) from employees;
    COUNT(EMPLOYEE_ID) COUNT(LAST_NAME) COUNT(HIRE_DATE)
    ------------------ ---------------- ----------------
                   107              107              107 

    -- 非空的有35个

    select count(commission_pct) from employees;

    COUNT(COMMISSION_PCT)
    ---------------------
                       35 

    -- 使用表达式仅仅计算是非空的

    select avg(commission_pct), sum(commission_pct)/count(commission_pct),sum(commission_pct)/107 from employees;
    AVG(COMMISSION_PCT) SUM(COMMISSION_PCT)/COUNT(COMMISSION_PCT) SUM(COMMISSION_PCT)/107
    ------------------- ----------------------------------------- -----------------------
           0.2228571429                              0.2228571429           0.07289719626 

    --求出employees表中各部门的平均工资

    select department_id,avg(salary)
    from employees
    group by department_id;
    DEPARTMENT_ID AVG(SALARY)
    ------------- -----------
                         7000 
              100        8600 
               30        4150 
               90 19333.33333 
               20        9500 
               10        4400 
    
     选定了 12

    --  在20,30,40中的

    select department_id,avg(salary)
    from employees
    where department_id  in(20,30,40)
    group by department_id;

    --多层分组的话

    select department_id,job_id,avg(salary)
    from employees
    group by department_id,job_id;

    注意:查询列表中只要不是组函数的列都该出现在group by 中

    --Having 的使用 

    --求出各部门中平均工资大于6000的部门,以及其平均工资   having替换where

    select department_id,avg(salary)
    from employees
    having avg(salary)>6000
    group by department_id order by department_id asc;
    DEPARTMENT_ID AVG(SALARY)
    ------------- -----------
               20        9500 
               40        6500 
               70       10000 
               80 8955.882353 
               90 19333.33333 
              100        8600 
              110       10150 
                         7000 
    
     选定了 8

    --组函数是可以嵌套的

    select avg(max(salary)) from employees 
    group by department_id;
    AVG(MAX(SALARY))
    ----------------
               10925 

    练习:

    --1.查询 employees 表中有多少个部门

    select count (distinct department_id ) from employees;
    COUNT(DISTINCTDEPARTMENT_ID)
    ----------------------------
                              11 

    --2.查询全公司奖金基数的平均值(没有奖金的人按 0 计算)

    AVG(NVL(COMMISSION_PCT,0))
    --------------------------
                 0.07289719626 

    --3. 查询各个部门的平均工资

    select department_id,avg(salary) from employees
    group by department_id;
    DEPARTMENT_ID AVG(SALARY)
    ------------- -----------
                         7000  
               30        4150 
               90 19333.33333 
               10        4400 
    
     选定了 12

    --4.Toronto 这个城市的员工的平均工资

    select 'Toronto',avg(salary)
    from employees e join departments d
    on  e.department_id = d.department_id
    join locations l
    on d.location_id = l.location_id
    where city = 'Toronto';
    'TORONTO' AVG(SALARY)
    --------- -----------
    Toronto          9500 

    --5.(有员工的城市)各个城市的平均工资

    select city,avg(salary)
    from employees e join departments d
    on  e.department_id = d.department_id
    join locations l
    on d.location_id = l.location_id
    group by city;
    CITY                           AVG(SALARY)
    ------------------------------ -----------
    London                                6500 
    Seattle                        8844.444444 
    Munich                               10000
    Oxford                         8955.882353 
    
     选定了 7

    --6.查询平均工资高于 8000 的部门 id 和它的平均工资.

    SELECT department_id, avg(salary)
    FROM employees e 
    HAVING avg(salary) > 8000    
    GROUP BY department_id
    DEPARTMENT_ID AVG(SALARY)
    ------------- -----------
              100        8600 
               90 19333.33333 
               20        9500 
               70       10000 
              110       10150 
               80 8955.882353 
    
     选定了 6

    -- 7. 查询平均工资高于 6000 的 job_title 有哪些

    SELECT job_title,avg(salary)
    FROM employees e join jobs j
    on e.job_id = j.job_id
    HAVING avg(salary) > 6000    
    GROUP BY job_title;
    JOB_TITLE                           AVG(SALARY)
    ----------------------------------- -----------
    Sales Representative                       8350 
    Accounting Manager                        12000 
    Public Relations Representative           10000 
    Administration Vice President             17000 

    -- 8 .查询所有部门的名字,location_id,员工数量和工资平均值 (右外连接  有的部门没有员工  emp表的数据少

    select department_name,location_id,count(employee_id),avg(salary)
    from employees e right outer join departments d
    on e.department_id = d.department_id
    group by department_name,location_id
    DEPARTMENT_NAME                LOCATION_ID COUNT(EMPLOYEE_ID) AVG(SALARY)
    ------------------------------ ----------- ------------------ -----------
    Administration                        1700                  1        4400 
    Marketing                             1800                  2        9500 
    Shareholder Services                  1700                  0             
    Operations                            1700                  0             

    9.查询公司在1995-1998年之间,每年雇用的人数,结果类似下面的格式

    total

    1995

    1996

    1997

    1998

    20

    3

    4

    6

    7

    select count(*) "total",
           count(decode(to_char(hire_date,'yyyy'),'1995',1,null)) "1995",
           count(decode(to_char(hire_date,'yyyy'),'1996',1,null)) "1996",
           count(decode(to_char(hire_date,'yyyy'),'1997',1,null)) "1997",
           count(decode(to_char(hire_date,'yyyy'),'1998',1,null)) "1998"
    from employees
    where to_char(hire_date,'yyyy') in ('1995','1996','1997','1998');
         total       1995       1996       1997       1998
    ---------- ---------- ---------- ---------- ----------
            65          4         10         28         23 
    All that work will definitely pay off
  • 相关阅读:
    Anaconda和Pycharm的安装和配置
    使用XAMPP集成开发环境安装Apache、PHP的配置说明
    新兴内存技术准备突围
    使嵌入式系统调试更容易:有用的硬件和软件提示
    保护嵌入式802.11 Wi-Fi设备时需要考虑的10件事
    关键任务应用程序依赖于故障保护存储器
    模拟内存计算如何解决边缘人工智能推理的功耗挑战
    如何为嵌入式应用选择适当的SSD
    Imec推出高性能芯片的低成本冷却解决方案
    交换机应用寻找10个完美的因素
  • 原文地址:https://www.cnblogs.com/afangfang/p/12547790.html
Copyright © 2011-2022 走看看