相对于ARM上一代的主流ARM7/ARM9内核架构,新一代Cortex内核架构的启动方式有了比较大的变化。ARM7/ARM9内核的控制器在复位后,CPU会从存储空间的绝对地址0x000000取出第一条指令执行复位中断服务程序的方式启动,即固定了复位后的起始地址为0x000000(PC = 0x000000)同时中断向量表的位置并不是固定的。而Cortex-M3内核则正好相反,有3种情况:
1、 通过boot引脚设置可以将中断向量表定位于SRAM区,即起始地址为0x2000000,同时复位后PC指针位于0x2000000处;
2、 通过boot引脚设置可以将中断向量表定位于FLASH区,即起始地址为0x8000000,同时复位后PC指针位于0x8000000处;
3、 通过boot引脚设置可以将中断向量表定位于内置Bootloader区,本文不对这种情况做论述;
而Cortex-M3内核规定,起始地址必须存放堆顶指针,而第二个地址则必须存放复位中断入口向量地址,这样在Cortex-M3内核复位后,会自动从起始地址的下一个32位空间取出复位中断入口向量,跳转执行复位中断服务程序。对比ARM7/ARM9内核,Cortex-M3内核则是固定了中断向量表的位置而起始地址是可变化的。
有了上述准备只是后,下面以STM32的2.02固件库提供的启动文件“stm32f10x_vector.s”为模板,对STM32的启动过程做一个简要而全面的解析。
程序清单一:
;文件“stm32f10x_vector.s”,其中注释为行号
1 DATA_IN_ExtSRAM EQU 0 ;1 2 Stack_Size EQU 0x00000400 ;2 3 AREA STACK, NOINIT, READWRITE, ALIGN = 3 ;3 4 Stack_Mem SPACE Stack_Size ;4 5 __initial_sp ;5 6 Heap_Size EQU 0x00000400 ;6 7 AREA HEAP, NOINIT, READWRITE, ALIGN = 3 ;7 8 __heap_base ;8 9 Heap_Mem SPACE Heap_Size ;9 10 __heap_limit ;10 11 THUMB ;11 12 PRESERVE8 ;12 13 IMPORT NMIException ;13 14 IMPORT HardFaultException ;14 15 IMPORT MemManageException ;15 16 IMPORT BusFaultException ;16 17 IMPORT UsageFaultException ;17 18 IMPORT SVCHandler ;18 19 IMPORT DebugMonitor ;19 20 IMPORT PendSVC ;20 21 IMPORT SysTickHandler ;21 22 IMPORT WWDG_IRQHandler ;22 23 IMPORT PVD_IRQHandler ;23 24 IMPORT TAMPER_IRQHandler ;24 25 IMPORT RTC_IRQHandler ;25 26 IMPORT FLASH_IRQHandler ;26 27 IMPORT RCC_IRQHandler ;27 28 IMPORT EXTI0_IRQHandler ;28 29 IMPORT EXTI1_IRQHandler ;29 30 IMPORT EXTI2_IRQHandler ;30 31 IMPORT EXTI3_IRQHandler ;31 32 IMPORT EXTI4_IRQHandler ;32 33 IMPORT DMA1_Channel1_IRQHandler ;33 34 IMPORT DMA1_Channel2_IRQHandler ;34 35 IMPORT DMA1_Channel3_IRQHandler ;35 36 IMPORT DMA1_Channel4_IRQHandler ;36 37 IMPORT DMA1_Channel5_IRQHandler ;37 38 IMPORT DMA1_Channel6_IRQHandler ;38 39 IMPORT DMA1_Channel7_IRQHandler ;39 40 IMPORT ADC1_2_IRQHandler ;40 41 IMPORT USB_HP_CAN_TX_IRQHandler ;41 42 IMPORT USB_LP_CAN_RX0_IRQHandler ;42 43 IMPORT CAN_RX1_IRQHandler ;43 44 IMPORT CAN_SCE_IRQHandler ;44 45 IMPORT EXTI9_5_IRQHandler ;45 46 IMPORT TIM1_BRK_IRQHandler ;46 47 IMPORT TIM1_UP_IRQHandler ;47 48 IMPORT TIM1_TRG_COM_IRQHandler ;48 49 IMPORT TIM1_CC_IRQHandler ;49 50 IMPORT TIM2_IRQHandler ;50 51 IMPORT TIM3_IRQHandler ;51 52 IMPORT TIM4_IRQHandler ;52 53 IMPORT I2C1_EV_IRQHandler ;53 54 IMPORT I2C1_ER_IRQHandler ;54 55 IMPORT I2C2_EV_IRQHandler ;55 56 IMPORT I2C2_ER_IRQHandler ;56 57 IMPORT SPI1_IRQHandler ;57 58 IMPORT SPI2_IRQHandler ;58 59 IMPORT USART1_IRQHandler ;59 60 IMPORT USART2_IRQHandler ;60 61 IMPORT USART3_IRQHandler ;61 62 IMPORT EXTI15_10_IRQHandler ;62 63 IMPORT RTCAlarm_IRQHandler ;63 64 IMPORT USBWakeUp_IRQHandler ;64 65 IMPORT TIM8_BRK_IRQHandler ;65 66 IMPORT TIM8_UP_IRQHandler ;66 67 IMPORT TIM8_TRG_COM_IRQHandler ;67 68 IMPORT TIM8_CC_IRQHandler ;68 69 IMPORT ADC3_IRQHandler ;69 70 IMPORT FSMC_IRQHandler ;70 71 IMPORT SDIO_IRQHandler ;71 72 IMPORT TIM5_IRQHandler ;72 73 IMPORT SPI3_IRQHandler ;73 74 IMPORT UART4_IRQHandler ;74 75 IMPORT UART5_IRQHandler ;75 76 IMPORT TIM6_IRQHandler ;76 77 IMPORT TIM7_IRQHandler ;77 78 IMPORT DMA2_Channel1_IRQHandler ;78 79 IMPORT DMA2_Channel2_IRQHandler ;79 80 IMPORT DMA2_Channel3_IRQHandler ;80 81 IMPORT DMA2_Channel4_5_IRQHandler ;81 82 AREA RESET, DATA, READONLY ;82 83 EXPORT __Vectors ;83 84 __Vectors ;84 85 DCD __initial_sp ;85 86 DCD Reset_Handler ;86 87 DCD NMIException ;87 88 DCD HardFaultException ;88 89 DCD MemManageException ;89 90 DCD BusFaultException ;90 91 DCD UsageFaultException ;91 92 DCD 0 ;92 93 DCD 0 ;93 94 DCD 0 ;94 95 DCD 0 ;95 96 DCD SVCHandler ;96 97 DCD DebugMonitor ;97 98 DCD 0 ;98 99 DCD PendSVC ;99 100 DCD SysTickHandler ;100 101 DCD WWDG_IRQHandler ;101 102 DCD PVD_IRQHandler ;102 103 DCD TAMPER_IRQHandler ;103 104 DCD RTC_IRQHandler ;104 105 DCD FLASH_IRQHandler ;105 106 DCD RCC_IRQHandler ;106 107 DCD EXTI0_IRQHandler ;107 108 DCD EXTI1_IRQHandler ;108 109 DCD EXTI2_IRQHandler ;109 110 DCD EXTI3_IRQHandler ;110 111 DCD EXTI4_IRQHandler ;111 112 DCD DMA1_Channel1_IRQHandler ;112 113 DCD DMA1_Channel2_IRQHandler ;113 114 DCD DMA1_Channel3_IRQHandler ;114 115 DCD DMA1_Channel4_IRQHandler ;115 116 DCD DMA1_Channel5_IRQHandler ;116 117 DCD DMA1_Channel6_IRQHandler ;117 118 DCD DMA1_Channel7_IRQHandler ;118 119 DCD ADC1_2_IRQHandler ;119 120 DCD USB_HP_CAN_TX_IRQHandler ;120 121 DCD USB_LP_CAN_RX0_IRQHandler ;121 122 DCD CAN_RX1_IRQHandler ;122 123 DCD CAN_SCE_IRQHandler ;123 124 DCD EXTI9_5_IRQHandler ;124 125 DCD TIM1_BRK_IRQHandler ;125 126 DCD TIM1_UP_IRQHandler ;126 127 DCD TIM1_TRG_COM_IRQHandler ;127 128 DCD TIM1_CC_IRQHandler ;128 129 DCD TIM2_IRQHandler ;129 130 DCD TIM3_IRQHandler ;130 131 DCD TIM4_IRQHandler ;131 132 DCD I2C1_EV_IRQHandler ;132 133 DCD I2C1_ER_IRQHandler ;133 134 DCD I2C2_EV_IRQHandler ;134 135 DCD I2C2_ER_IRQHandler ;135 136 DCD SPI1_IRQHandler ;136 137 DCD SPI2_IRQHandler ;137 138 DCD USART1_IRQHandler ;138 139 DCD USART2_IRQHandler ;139 140 DCD USART3_IRQHandler ;140 141 DCD EXTI15_10_IRQHandler ;141 142 DCD RTCAlarm_IRQHandler ;142 143 DCD USBWakeUp_IRQHandler ;143 144 DCD TIM8_BRK_IRQHandler ;144 145 DCD TIM8_UP_IRQHandler ;145 146 DCD TIM8_TRG_COM_IRQHandler ;146 147 DCD TIM8_CC_IRQHandler ;147 148 DCD ADC3_IRQHandler ;148 149 DCD FSMC_IRQHandler ;149 150 DCD SDIO_IRQHandler ;150 151 DCD TIM5_IRQHandler ;151 152 DCD SPI3_IRQHandler ;152 153 DCD UART4_IRQHandler ;153 154 DCD UART5_IRQHandler ;154 155 DCD TIM6_IRQHandler ;155 156 DCD TIM7_IRQHandler ;156 157 DCD DMA2_Channel1_IRQHandler ;157 158 DCD DMA2_Channel2_IRQHandler ;158 159 DCD DMA2_Channel3_IRQHandler ;159 160 DCD DMA2_Channel4_5_IRQHandler ;160 161 AREA |.text|, CODE, READONLY ;161 162 Reset_Handler PROC ;162 163 EXPORT Reset_Handler ;163 164 IF DATA_IN_ExtSRAM == 1 ;164 165 LDR R0,= 0x00000114 ;165 166 LDR R1,= 0x40021014 ;166 167 STR R0,[R1] ;167 168 LDR R0,= 0x000001E0 ;168 169 LDR R1,= 0x40021018 ;169 170 STR R0,[R1] ;170 171 LDR R0,= 0x44BB44BB ;171 172 LDR R1,= 0x40011400 ;172 173 STR R0,[R1] ;173 174 LDR R0,= 0xBBBBBBBB ;174 175 LDR R1,= 0x40011404 ;175 176 STR R0,[R1] ;176 177 LDR R0,= 0xB44444BB ;177 178 LDR R1,= 0x40011800 ;178 179 STR R0,[R1] ;179 180 LDR R0,= 0xBBBBBBBB ;180 181 LDR R1,= 0x40011804 ;181 182 STR R0,[R1] ;182 183 LDR R0,= 0x44BBBBBB ;183 184 LDR R1,= 0x40011C00 ;184 185 STR R0,[R1] ;185 186 LDR R0,= 0xBBBB4444 ;186 187 LDR R1,= 0x40011C04 ;187 188 STR R0,[R1] ;188 189 LDR R0,= 0x44BBBBBB ;189 190 LDR R1,= 0x40012000 ;190 191 STR R0,[R1] ;191 192 LDR R0,= 0x44444B44 ;192 193 LDR R1,= 0x40012004 ;193 194 STR R0,[R1] ;194 195 LDR R0,= 0x00001011 ;195 196 LDR R1,= 0xA0000010 ;196 197 STR R0,[R1] ;197 198 LDR R0,= 0x00000200 ;198 199 LDR R1,= 0xA0000014 ;199 200 STR R0,[R1] ;200 201 ENDIF ;201 202 IMPORT __main ;202 203 LDR R0, =__main ;203 204 BX R0 ;204 205 ENDP ;205 206 ALIGN ;206 207 IF :DEF:__MICROLIB ;207 208 EXPORT __initial_sp ;208 209 EXPORT __heap_base ;209 210 EXPORT __heap_limit ;210 211 ELSE ;211 212 IMPORT __use_two_region_memory ;212 213 EXPORT __user_initial_stackheap ;213 214 __user_initial_stackheap ;214 215 LDR R0, = Heap_Mem ;215 216 LDR R1, = (Stack_Mem + Stack_Size) ;216 217 LDR R2, = (Heap_Mem + Heap_Size) ;217 218 LDR R3, = Stack_Mem ;218 219 BX LR ;219 220 ALIGN ;220 221 ENDIF ;221 222 END ;222 223 ENDIF ;223 224 END ;224
如程序清单一,STM32的启动代码一共224行,使用了汇编语言编写,这其中的主要原因下文将会给出交代。现在从第一行开始分析:
第1行:定义是否使用外部SRAM,为1则使用,为0则表示不使用。此语行若用C语言表达则等价于:
#define DATA_IN_ExtSRAM 0
第2行:定义栈空间大小为0x00000400个字节,即1Kbyte。此语行亦等价于:
#define Stack_Size 0x00000400
第3行:伪指令AREA,表示
第4行:开辟一段大小为Stack_Size的内存空间作为栈。
第5行:标号__initial_sp,表示栈空间顶地址。
第6行:定义堆空间大小为0x00000400个字节,也为1Kbyte。
第7行:伪指令AREA,表示
第8行:标号__heap_base,表示堆空间起始地址。
第9行:开辟一段大小为Heap_Size的内存空间作为堆。
第10行:标号__heap_limit,表示堆空间结束地址。
第11行:告诉编译器使用THUMB指令集。
第12行:告诉编译器以8字节对齐。
第13—81行:IMPORT指令,指示后续符号是在外部文件定义的(类似C语言中的全局变量声明),而下文可能会使用到这些符号。
第82行:定义只读数据段,实际上是在CODE区(假设STM32从FLASH启动,则此中断向量表起始地址即为0x8000000)
第83行:将标号__Vectors声明为全局标号,这样外部文件就可以使用这个标号。
第84行:标号__Vectors,表示中断向量表入口地址。
第85—160行:建立中断向量表。
第161行:
第162行:复位中断服务程序,PROC…ENDP结构表示程序的开始和结束。
第163行:声明复位中断向量Reset_Handler为全局属性,这样外部文件就可以调用此复位中断服务。
第164行:IF…ENDIF为预编译结构,判断是否使用外部SRAM,在第1行中已定义为“不使用”。
第165—201行:此部分代码的作用是设置FSMC总线以支持SRAM,因不使用外部SRAM因此此部分代码不会被编译。
第202行:声明__main标号。
第203—204行:跳转__main地址执行。
第207行:IF…ELSE…ENDIF结构,判断是否使用DEF:__MICROLIB(此处为不使用)。
第208—210行:若使用DEF:__MICROLIB,则将__initial_sp,__heap_base,__heap_limit亦即栈顶地址,堆始末地址赋予全局属性,使外部程序可以使用。
第212行:定义全局标号__use_two_region_memory。
第213行:声明全局标号__user_initial_stackheap,这样外程序也可调用此标号。
第214行:标号__user_initial_stackheap,表示用户堆栈初始化程序入口。
第215—218行:分别保存栈顶指针和栈大小,堆始地址和堆大小至R0,R1,R2,R3寄存器。
第224行:程序完毕。
以上便是STM32的启动代码的完整解析,接下来对几个小地方做解释:
1、 AREA指令:伪指令,用于定义代码段或数据段,后跟属性标号。其中比较重要的一个标号为“READONLY”或者“READWRITE”,其中“READONLY”表示该段为只读属性,联系到STM32的内部存储介质,可知具有只读属性的段保存于FLASH区,即0x8000000地址后。而“READONLY”表示该段为“可读写”属性,可知“可读写”段保存于SRAM区,即0x2000000地址后。由此可以从第3、7行代码知道,堆栈段位于SRAM空间。从第82行可知,中断向量表放置与FLASH区,而这也是整片启动代码中最先被放进FLASH区的数据。因此可以得到一条重要的信息:0x8000000地址存放的是栈顶地址__initial_sp,0x8000004地址存放的是复位中断向量Reset_Handler(STM32使用32位总线,因此存储空间为4字节对齐)。
2、 DCD指令:作用是开辟一段空间,其意义等价于C语言中的地址符“&”。因此从第84行开始建立的中断向量表则类似于使用C语言定义了一个指针数组,其每一个成员都是一个函数指针,分别指向各个中断服务函数。
3、 标号:前文多处使用了“标号”一词。标号主要用于表示一片内存空间的某个位置,等价于C语言中的“地址”概念。地址仅仅表示存储空间的一个位置,从C语言的角度来看,变量的地址,数组的地址或是函数的入口地址在本质上并无区别。
4、 第202行中的__main标号并不表示C程序中的main函数入口地址,因此第204行也并不是跳转至main函数开始执行C程序。__main标号表示C/C++标准实时库函数里的一个初始化子程序__main的入口地址。该程序的一个主要作用是初始化堆栈(对于程序清单一来说则是跳转__user_initial_stackheap标号进行初始化堆栈的),并初始化映像文件,最后跳转C程序中的main函数。这就解释了为何所有的C程序必须有一个main函数作为程序的起点——因为这是由C/C++标准实时库所规定的——并且不能更改,因为C/C++标准实时库并不对外界开发源代码。因此,实际上在用户可见的前提下,程序在第204行后就跳转至.c文件中的main函数,开始执行C程序了。
至此可以总结一下STM32的启动文件和启动过程。首先对栈和堆的大小进行定义,并在代码区的起始处建立中断向量表,其第一个表项是栈顶地址,第二个表项是复位中断服务入口地址。然后在复位中断服务程序中跳转¬¬C/C++标准实时库的__main函数,完成用户堆栈等的初始化后,跳转.c文件中的main函数开始执行C程序。假设STM32被设置为从内部FLASH启动(这也是最常见的一种情况),中断向量表起始地位为0x8000000,则栈顶地址存放于0x8000000处,而复位中断服务入口地址存放于0x8000004处。当STM32遇到复位信号后,则从0x80000004处取出复位中断服务入口地址,继而执行复位中断服务程序,然后跳转__main函数,最后进入mian函数,来到C的世界。