Problem Description
On a grid map there are n little men and n houses. In each unit time, every little man can move one unit step, either horizontally, or vertically, to an adjacent point. For each little man, you need to pay a $1 travel fee for every step he moves, until he enters a house. The task is complicated with the restriction that each house can accommodate only one little man.
Your task is to compute the minimum amount of money you need to pay in order to send these n little men into those n different houses. The input is a map of the scenario, a '.' means an empty space, an 'H' represents a house on that point, and am 'm' indicates there is a little man on that point.
You can think of each point on the grid map as a quite large square, so it can hold n little men at the same time; also, it is okay if a little man steps on a grid with a house without entering that house.
Your task is to compute the minimum amount of money you need to pay in order to send these n little men into those n different houses. The input is a map of the scenario, a '.' means an empty space, an 'H' represents a house on that point, and am 'm' indicates there is a little man on that point.
You can think of each point on the grid map as a quite large square, so it can hold n little men at the same time; also, it is okay if a little man steps on a grid with a house without entering that house.
Input
There are one or more test cases in the input. Each case starts with a line giving two integers N and M, where N is the number of rows of the map, and M is the number of columns. The rest of the input will be N lines describing the map. You may assume both N and M are between 2 and 100, inclusive. There will be the same number of 'H's and 'm's on the map; and there will be at most 100 houses. Input will terminate with 0 0 for N and M.
Output
For each test case, output one line with the single integer, which is the minimum amount, in dollars, you need to pay.
Sample Input
2 2
.m
H.
5 5
HH..m
.....
.....
.....
mm..H
7 8
...H....
...H....
...H....
mmmHmmmm
...H....
...H....
...H....
0 0
Sample Output
2
10
28
有几个人要回几个家,每人每走一步花费1块钱,问大家一共最少花费多少钱?
最小费用最大流模板题 献祭上模板
费用流模板
1 #include <bits/stdc++.h> 2 3 using namespace std; 4 const int maxn = 200; 5 const int N = 500020; 6 const int M = 500020; 7 const int inf = 0x3f3f3f3f; 8 9 int n,m; 10 struct Edge { 11 int from, to, cap, flow; 12 int cost; 13 }; 14 inline int Min(int aa,int bb) 15 { 16 return aa<bb?aa:bb; 17 } 18 vector < pair<int,int> > men; 19 vector < pair<int,int> > house; 20 struct MCMF { 21 int n, m, s, t; 22 vector<Edge> edges; 23 vector<int> G[N]; 24 int inq[N]; // 是否在队列中 25 int d[N]; // Bellman-Ford 26 int p[N]; // 上一条弧 27 int a[N]; // 可改进量 28 void init(int n) { 29 this->n = n; 30 for(int i = 0; i < n; i++) G[i].clear(); 31 edges.clear(); 32 } 33 34 void addedge(int from, int to, int cap, int cost) { 35 edges.push_back((Edge){from, to, cap, 0, cost}); 36 edges.push_back((Edge){to, from, 0, 0, -cost}); 37 m = edges.size(); 38 G[from].push_back(m-2); 39 G[to].push_back(m-1); 40 } 41 bool BellmanFord(int s, int t, int& flow,int& cost) { 42 for(int i = 0; i < n; i++) d[i] = inf; 43 memset(inq, 0, sizeof(inq)); 44 d[s] = 0; inq[s] = 1; p[s] = 0; a[s] = inf; 45 queue<int> Q; 46 Q.push(s); 47 while(!Q.empty()) { 48 int u = Q.front(); Q.pop(); 49 inq[u] = 0; 50 int l=G[u].size(); 51 for(int i = 0; i < l; i++) { 52 Edge& e = edges[G[u][i]]; 53 if(e.cap > e.flow && d[e.to] > d[u] + e.cost) { 54 d[e.to] = d[u] + e.cost; 55 p[e.to] = G[u][i]; 56 a[e.to] = Min(a[u], e.cap - e.flow); 57 if(!inq[e.to]) { Q.push(e.to); inq[e.to] = 1; } 58 } 59 } 60 } 61 if(d[t] == inf) return false; 62 cost += d[t]*a[t]; 63 int u = t; 64 while(u != s) { 65 edges[p[u]].flow += a[t]; 66 edges[p[u]^1].flow -= a[t]; 67 u = edges[p[u]].from; 68 } 69 return true; 70 } 71 int Mincost(int s, int t) { 72 int cost = 0; 73 int flow=0; 74 while(BellmanFord(s, t,flow, cost)); 75 return cost; 76 } 77 }g; 78 char s[maxn][maxn]; 79 int getid (int x,int y) 80 { 81 return (x-1)*m+y; 82 } 83 int x[maxn],xx[maxn]; 84 int y[maxn],yy[maxn]; 85 int nx,ny; 86 int main() { 87 //freopen("de.txt","r",stdin); 88 while(~scanf("%d%d", &n, &m)) { 89 if (n==0&&m==0) 90 break; 91 nx = ny = 0; 92 g.init(n*m+100); 93 int ffrom = n*m+ 1;int tto = n*m + 2; 94 for(int i = 1; i <= n; ++i) { 95 scanf("%s", s[i] + 1); 96 for(int j = 1; j <= m; ++j) { 97 if(s[i][j] == 'm') { 98 nx++; 99 x[nx] = i; 100 y[nx] = j; 101 } 102 if(s[i][j] == 'H') { 103 ny++; 104 xx[ny] = i; 105 yy[ny] = j; 106 } 107 } 108 } 109 110 for(int i = 1; i <= nx; ++i) { 111 for(int j = 1; j <= ny; ++j) { 112 int d = abs(x[i] - xx[j]); 113 d += abs(y[i] - yy[j]); 114 g.addedge(getid(x[i],y[i]), getid(xx[j],yy[j]), 1, d); 115 } 116 } 117 for(int i = 1; i <= nx; ++i) g.addedge(ffrom, getid(x[i],y[i]), 1, 0); 118 for(int i = 1; i <= ny; ++i) g.addedge(getid(xx[i],yy[i]), tto, 1, 0); 119 printf("%d ", g.Mincost(ffrom, tto)); 120 } 121 return 0; 122 }
zkw费用流,每次增广多条路
1 #include <bits/stdc++.h> 2 3 using namespace std; 4 const int maxn = 200; 5 const int N = 500020; 6 const int M = 500020; 7 const int inf = 0x3f3f3f3f; 8 9 int n,m; 10 struct Edge { 11 int from, to, cap, flow; 12 int cost; 13 }; 14 inline int Min(int aa,int bb) 15 { 16 return aa<bb?aa:bb; 17 } 18 19 char s[maxn][maxn]; 20 21 struct zkw { 22 int C, D; 23 int s, t; 24 int fst[N], nxt[M], vv[M], cap[M], flow[M], cost[M], e; 25 bool vis[N]; 26 void init() { 27 memset(fst, -1, sizeof fst); 28 e = 0; 29 C = D = 0; 30 } 31 void add(int u, int v, int f, int c) { 32 vv[e] = v, nxt[e] = fst[u], cost[e] = c, cap[e] = f, flow[e] = 0, fst[u] = e++; 33 vv[e] = u, nxt[e] = fst[v], cost[e] = -c, cap[e] = flow[e] = 0, fst[v] = e++; 34 } 35 int aug(int u, int f) { 36 if(u == t) { 37 C += D * f; 38 return f; 39 } 40 vis[u] = 1; 41 int tmp = f; 42 for(int i = fst[u]; ~i; i = nxt[i]) { 43 int v = vv[i]; 44 if(cap[i] > flow[i] && cost[i] == 0 && !vis[v]) { 45 int d = aug(v, tmp < cap[i] - flow[i]? tmp: cap[i] - flow[i]); 46 flow[i] += d; 47 flow[i^1] -= d; 48 tmp -= d; 49 if(!tmp) return f; 50 } 51 } 52 return f - tmp; 53 } 54 bool modLabel() { 55 int d = inf; 56 for(int i = 0; i <= t; ++i) if(vis[i]) { 57 for(int j = fst[i]; ~j; j = nxt[j]) { 58 int v = vv[j]; 59 if(cap[j] > flow[j] && !vis[v] && cost[j] < d) d = cost[j]; 60 } 61 } 62 if(d == inf) return 0; 63 for(int i = 0; i <= t; ++i) { 64 if(vis[i]) { 65 for(int j = fst[i]; ~j; j = nxt[j]) { 66 int v = vv[j]; 67 cost[j] -= d; 68 cost[j^1] += d; 69 } 70 } 71 } 72 D += d; 73 return 1; 74 } 75 int gao(int s, int t) { 76 this -> s = s, this -> t = t; 77 do do memset(vis, 0, sizeof vis); 78 while(aug(s, inf)); while(modLabel()); 79 return C; 80 } 81 }g; 82 83 int getid (int x,int y) 84 { 85 return (x-1)*m+y; 86 } 87 int x[maxn],xx[maxn]; 88 int y[maxn],yy[maxn]; 89 int nx,ny; 90 int main() { 91 //freopen("de.txt","r",stdin); 92 while(~scanf("%d%d", &n, &m)) { 93 if (n==0&&m==0) 94 break; 95 nx = ny = 0; 96 g.init(); 97 int ffrom = n*m+ 1;int tto = n*m + 2; 98 for(int i = 1; i <= n; ++i) { 99 scanf("%s", s[i] + 1); 100 for(int j = 1; j <= m; ++j) { 101 if(s[i][j] == 'm') { 102 nx++; 103 x[nx] = i; 104 y[nx] = j; 105 } 106 if(s[i][j] == 'H') { 107 ny++; 108 xx[ny] = i; 109 yy[ny] = j; 110 } 111 } 112 } 113 114 for(int i = 1; i <= nx; ++i) { 115 for(int j = 1; j <= ny; ++j) { 116 int d = abs(x[i] - xx[j]); 117 d += abs(y[i] - yy[j]); 118 g.add(getid(x[i],y[i]), getid(xx[j],yy[j]), 1, d); 119 } 120 } 121 for(int i = 1; i <= nx; ++i) g.add(ffrom, getid(x[i],y[i]), 1, 0); 122 for(int i = 1; i <= ny; ++i) g.add(getid(xx[i],yy[i]), tto, 1, 0); 123 printf("%d ", g.gao(ffrom, tto)); 124 } 125 return 0; 126 }