zoukankan      html  css  js  c++  java
  • Regular Bracketsequence

    【原题链接】

    【题意说明】

    构造合法的bracket-sequence。首先满足以下条件的序列是合法的bracket-sequence:

    (1)空串是一个合法的bracket-sequence;

    (2)若A是一个合法的bracket-sequence,则(A)、[A]、{A}都 是合法的bracket-sequence;

    (3)若A和B都是合法的bracket-sequence,则ABbn是合法的bracket-sequence。

    现在有一个带有通配符“?”的序列,问可以构造成多少个合法的bracket-sequence。

    由于这个数可能很大,输出时仅输出这个数的最后5位。

    【问题分析】

    一看到这个带有括号的串,我们的第一感觉就是括号的匹配问题!又要用到栈了!但这里去并非如此,如果要运用栈的话,显然对于要求很大很大的数一定是件很费时的事!这里绝对不能动模拟的念头!!

    那么该怎么思考这个问题呢?

    我们先看样例:

    (?([?)]?}?

    对于这个串,首先我们要为第1个符号寻找与之匹配的符号

    (1)第2个位置,由于?是通配符号,可以与第1个符号匹配,那只需要检查从第3个位置到最后有多少种匹配即可,即把原问题规模缩小了。

    (2)再看第3个位置,对于这个位置,根本无需检查,因为即使它能与第1个位置匹配,那它中间只剩下一个符号,根本无法匹配,所以由此可知,第1个位置只能与偶数位置的去匹配!

    (3)再找下一个可匹配的,是第6个位置,这样只需要检查第2个位置到第5个位置有多少种匹配,以及第7个位置到最后有多少种匹配,由于两个子路是独立的,所以此时的bracket-sequence数为两个子串的bracket-sequence数之积!

    由此,可得出以下关系式:

    若对于第1个位置标记为0,其匹配长度为j时的bracket-sequence数为f[0][j],则有f[0][j]=f[1][j-1]*f[j*2][L-j](其中L为串的长度/2)

    这样,就可以得到这样的递推式来完成

    f[i][j]=g(i,j)*f[i+1][j-1]+sum(f[i][k]*f[i+j*2][j-k]) (其中g(i,j)表示第i个位置,匹配长度为j时可与最后那个位置匹配可能数)

    写完程序后,测试这组数据

    6

    ()()()

    时,输出的结果是2 ,这个结果明显应该是1啊!

    结果发现上个式子错误的把()两两组合计算了两遍,原因就是f[0][1]*f[2][2]算一遍,而f[0][1]*f[4][2]也算一遍,这两个其实都是列出了f[0][1]、f[2][1]、f[4][1]这种可能,其主要原因就是f[0][2]的结果是1,它保存了f[0][1]与f[2][1]这种,而f[2][2]保存了f[2][1]与f[4]1]这种,从而导致重复计算!

    问题的关键就在于要把f[i][k]*f[i+j*2][j-k]中的f[i][k]一定表示为首尾匹配情况下所得到的数,这里可以把数组再加一维,用于记录!则原递推式改为:

    f[i][j][0]=g(i,j)*f[i+1][j-1][1]

    f[i][j][1]=f[i][j][0]+sum(f[i][k][0]*f[i+j*2][j-k][1])

    在求解过程中加上取模运算即可!

    另需要提醒的时,由于保存的是后5位数,所以乘法运算会超出整型范围,要使用__int64数据类型!

    还有输出后5位数,所以有可能有前导0!!

  • 相关阅读:
    轮播插件unsilder 源码解析(二)
    轮播插件unsilder 源码解析(一)---源码解析
    轮播插件unsilder 源码解析(一)---使用
    jquery插件扩展的学习
    基于canvas的陈列订货的分析
    grunt安装和使用教程
    2016订货会项目总结2
    2016工作项目完成总结
    不使用递归法求值
    easy bootstrap模板
  • 原文地址:https://www.cnblogs.com/ahmasoi/p/2748674.html
Copyright © 2011-2022 走看看