【题意说明】
给定一个长度为K的单词s1(只包含小写字母或者数字),总共会有多少个长度为N的不同字符串s2(只包含小写字母或者数字),并且s2中包含子串s1,如果结果超过100003,则取除以100003的余数。
【问题分析】
本题的题意很明了,一开始我采用的是把s2看作一个整体,这样就剩下K-N个位置可以放置任意小写字母和数字,共有36^(K-N),由于串s2共有(K-N+1)种摆法,所以共有(K-N+1)*36^(K-N)种!剩下的问题就是去重!可去重的过程考虑不全面,最后把自己都整晕了,不得放弃了这种做法!然后采用累加求和的方式:计算当串s2在第i个位置时的有效方案数!
这里的有效方案数是指:在i位置之前不能再有s2串出现,在i位置之后可以是任意的!
(1)令b[i]=36^i;令d[i]为前i个位置中串s2结尾正好在第i位置有效方案数;令a[i]表示前i个位置所有的有效方案数,所以总方案数为:sum(a[i]*b[k-i]) {i=N~K}
(3)a[k]=0;d[k]=0;{k=1~N-1}
(4)a[N]=1;d[N]=1;
(5)d[i]=b[i-N]-a[i-N]-g(j); {其中g(j)表示的是以串的结尾在i位置,其向前一个字符为串的结束时的有效方案数}
a[i]=sum(d[j]*b[i-j])+d[i]+b[i-k]; {sum(),可以用t=t*36+a[i];的形式来实现叠加!}
其主要代码为:(其中的c[i],表示以串的第i个字符为结束符时,能否在前面补充适当的字符以构成串s2,若能则c[i]=1否则c[i]=0)
View Code
1 a[k]=d[k]=1;t=0; 2 for (i=k+1;i<=n;i++) 3 { 4 d[i]=b[i-k]-a[i-k]; 5 for (j=1;j<k;j++) if(c[k-j-1]) d[i]-=d[i-j]; 6 d[i]=(Max+d[i]%Max)%Max; 7 t=(t*36+d[i])%Max; 8 a[i]=(b[i-k]+t)%Max; 9 }