zoukankan      html  css  js  c++  java
  • HashMap源码详解(基于jdk1.8.0_231)

    1. HashMap源码简介

    • HashMap数据结构本质上是散列表,jdk1.8前,利用链表处理哈希冲突,jdk1.8利用链表和红黑树来解决哈希冲突。具体来讲当链表的长度等于8时,链表就被树化为红黑树,总之jdk1.8前HashMap的数据结构为数组+链表(数组在HashMap中又称为buckets【桶】),从jdk1.8后HashMap的数据结构为数组+链表+红黑树;
    • HashMap基本等价于HashTable,HashMap时线程不安全的,HashTable时线程安全的,多线程环境下,需要对HashMap外部加锁,或是使用线程安全的类代替,或 Map m = Collections.synchronizedMap(new HashMap(...));
    • HashMap的容量(capacity)一定为2的幂次方;
    • HashMap映入了:容量,threshold,loadfactor,三个参数,当其size >= threshold = capacity * loadfactor时就会扩容,扩容后哈希表的数组容量为原数组容量的两倍,其中loadfactor 默认值为0.75,这是时空复杂的一个平衡折中设计,若loadfactor太大,虽然省了空间,但是哈希碰撞可能会增多,这样get put 时间都是变长,若loadfacror太小,碰撞虽然小了,但太费空间;
    • HashMap允许null作为key和value,HashTable不允许key或value为null;
    • 若要在HashMap中存储大量的key-value对,预估设置容量,比不断扩容性能要好很多;
    • HashMap 的迭代器也存在fast-fail机制,即一旦使用迭代器迭代HashMap实例,除了利用迭代器类的方法修改HashMap实例的结构外,其他方法修改HashMap结构,都会抛异常;

    2. HashMap内存逻辑结构

    3. HashMap UML简图

    HashMap API概述

    HashMap类中定义的字段

    private  static final long serialVersionUID = 362498820763181265L;
    static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16
    static final int MAXIMUM_CAPACITY = 1 << 30;
    static final float DEFAULT_LOAD_FACTOR = 0.75f;
    static final int TREEIFY_THRESHOLD = 8;
    static final int UNTREEIFY_THRESHOLD = 6;
    static final int MIN_TREEIFY_CAPACITY = 64;
    transient Node<K,V>[] table;
    transient Set<Map.Entry<K,V>> entrySet;
    transient int size;
    transient int modCount;
    int threshold;
    final float loadFactor;
    

    构造函数

    public HashMap(int initialCapacity, float loadFactor)
    public HashMap(int initialCapacity) 
    public HashMap()
    public HashMap(Map<? extends K, ? extends V> m)
    

    Override或新增的方法

    public int size()
    public boolean isEmpty()
    public V get(Object key)
    public V put(K key, V value)
    public boolean containsKey(Object key)
    public void putAll(Map<? extends K, ? extends V> m)
    public V remove(Object key)
    public void clear()
    public boolean containsValue(Object value)
    ----------------HashMap的三个视图------------
    public Set<K> keySet()
    public Collection<V> values() 
    public Set<Map.Entry<K,V>> entrySet()
    ----------------jdk新增的方法----------------
    public V getOrDefault(Object key, V defaultValue) 
    public V putIfAbsent(K key, V value)
    public boolean remove(Object key, Object value)
    public boolean replace(K key, V oldValue, V newValue)
    public V replace(K key, V value)
    public V computeIfAbsent(K key, Function<? super K, ? extends V> mappingFunction)
    public V computeIfPresent(K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction)
    public V compute(K key,BiFunction<? super K, ? super V, ? extends V> remappingFunction)
    public V merge(K key, V value, BiFunction<? super V, ? super V, ? extends V> remappingFunction)
    public void forEach(BiConsumer<? super K, ? super V> action)
    public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function)
    ----------------------------------------------
    public Object clone()
    

    HashMap类中的包权限方法

    final void putMapEntries(Map<? extends K, ? extends V> m, boolean evict)
    final Node<K,V> getNode(int hash, Object key)
    final V putVal(int hash, K key, V value, boolean onlyIfAbsent, boolean evict)
    final Node<K,V>[] resize()
    final void treeifyBin(Node<K,V>[] tab, int hash)
    final Node<K,V> removeNode(int hash, Object key, Object value,boolean matchValue, boolean movable)
    final float loadFactor()
    final int capacity() 
    Node<K,V> newNode(int hash, K key, V value, Node<K,V> next)
    Node<K,V> replacementNode(Node<K,V> p, Node<K,V> next)
    TreeNode<K,V> newTreeNode(int hash, K key, V value, Node<K,V> next)
    TreeNode<K,V> replacementTreeNode(Node<K,V> p, Node<K,V> next)
    void reinitialize()
    void afterNodeAccess(Node<K,V> p) 
    void afterNodeInsertion(boolean evict)
    void afterNodeRemoval(Node<K,V> p)
    void internalWriteEntries(java.io.ObjectOutputStream s)
    final TreeNode<K,V> root()
    static <K,V> void moveRootToFront(Node<K,V>[] tab, TreeNode<K,V> root)
    final TreeNode<K,V> find(int h, Object k, Class<?> kc)
    final TreeNode<K,V> getTreeNode(int h, Object k)
    static int tieBreakOrder(Object a, Object b)
    final void treeify(Node<K,V>[] tab)
    final Node<K,V> untreeify(HashMap<K,V> map)
    final TreeNode<K,V> putTreeVal(HashMap<K,V> map, Node<K,V>[] tab, int h, K k, V v)
    final void removeTreeNode(HashMap<K,V> map, Node<K,V>[] tab, boolean movable)
    final void split(HashMap<K,V> map, Node<K,V>[] tab, int index, int bit)
    static <K,V> TreeNode<K,V> rotateLeft
    static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root, TreeNode<K,V> p)
    static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root, TreeNode<K,V> x)
    static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root, TreeNode<K,V> x)
    static <K,V> boolean checkInvariants(TreeNode<K,V> t)
    
    

    类中private方法

    private void writeObject(java.io.ObjectOutputStream s)
    private void readObject(java.io.ObjectInputStream s)
    

    4. HashMap源码解析

    package java.util;
    
    import java.io.IOException;
    import java.io.InvalidObjectException;
    import java.io.Serializable;
    import java.lang.reflect.ParameterizedType;
    import java.lang.reflect.Type;
    import java.util.function.BiConsumer;
    import java.util.function.BiFunction;
    import java.util.function.Consumer;
    import java.util.function.Function;
    import sun.misc.SharedSecrets;
    
    public class HashMap<K,V> extends AbstractMap<K,V>
        implements Map<K,V>, Cloneable, Serializable {
    
        private static final long serialVersionUID = 362498820763181265L;
        static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; //默认的初始化容量16
        static final int MAXIMUM_CAPACITY = 1 << 30; //最大容量
        static final float DEFAULT_LOAD_FACTOR = 0.75f; //默认的加载因子
        static final int TREEIFY_THRESHOLD = 8; //链表长度大于等于8时,链表树化
        static final int UNTREEIFY_THRESHOLD = 6; 
        static final int MIN_TREEIFY_CAPACITY = 64;
        static class Node<K,V> implements Map.Entry<K,V> {
            final int hash;
            final K key;
            V value;
            Node<K,V> next;
    
            Node(int hash, K key, V value, Node<K,V> next) {
                this.hash = hash;
                this.key = key;
                this.value = value;
                this.next = next;
            }
    
            public final K getKey()        { return key; }
            public final V getValue()      { return value; }
            public final String toString() { return key + "=" + value; }
    
            public final int hashCode() {
                return Objects.hashCode(key) ^ Objects.hashCode(value);
            }
    
            public final V setValue(V newValue) {
                V oldValue = value;
                value = newValue;
                return oldValue;
            }
    
            public final boolean equals(Object o) {
                if (o == this)
                    return true;
                if (o instanceof Map.Entry) {
                    Map.Entry<?,?> e = (Map.Entry<?,?>)o;
                    if (Objects.equals(key, e.getKey()) &&
                        Objects.equals(value, e.getValue()))
                        return true;
                }
                return false;
            }
        }
        /* ---------------- Static utilities -------------- */
        static final int hash(Object key) {
            int h;
            return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
        }
        static Class<?> comparableClassFor(Object x) {
            if (x instanceof Comparable) {
                Class<?> c; Type[] ts, as; Type t; ParameterizedType p;
                if ((c = x.getClass()) == String.class) // bypass checks
                    return c;
                if ((ts = c.getGenericInterfaces()) != null) {
                    for (int i = 0; i < ts.length; ++i) {
                        if (((t = ts[i]) instanceof ParameterizedType) &&
                            ((p = (ParameterizedType)t).getRawType() ==
                             Comparable.class) &&
                            (as = p.getActualTypeArguments()) != null &&
                            as.length == 1 && as[0] == c) // type arg is c
                            return c;
                    }
                }
            }
            return null;
        }
        @SuppressWarnings({"rawtypes","unchecked"}) // for cast to Comparable
        static int compareComparables(Class<?> kc, Object k, Object x) {
            return (x == null || x.getClass() != kc ? 0 :
                    ((Comparable)k).compareTo(x));
        }
        //将HashMap的容量设置为2的幂次方
        static final int tableSizeFor(int cap) {
            int n = cap - 1;
            n |= n >>> 1;
            n |= n >>> 2;
            n |= n >>> 4;
            n |= n >>> 8;
            n |= n >>> 16;
            return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
        }
    
        /* ---------------- Fields -------------- */
        transient Node<K,V>[] table;
        transient Set<Map.Entry<K,V>> entrySet;
        transient int size;
        transient int modCount;
        int threshold;
        final float loadFactor;
    
        /* ---------------- Public operations -------------- */
        public HashMap(int initialCapacity, float loadFactor) {
            if (initialCapacity < 0)
                throw new IllegalArgumentException("Illegal initial capacity: " +
                                                   initialCapacity);
            if (initialCapacity > MAXIMUM_CAPACITY)
                initialCapacity = MAXIMUM_CAPACITY;
            if (loadFactor <= 0 || Float.isNaN(loadFactor))
                throw new IllegalArgumentException("Illegal load factor: " +
                                                   loadFactor);
            this.loadFactor = loadFactor;
            this.threshold = tableSizeFor(initialCapacity);
        }
        public HashMap(int initialCapacity) {
            this(initialCapacity, DEFAULT_LOAD_FACTOR);
        }
        public HashMap() {
            this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
        }
        public HashMap(Map<? extends K, ? extends V> m) {
            this.loadFactor = DEFAULT_LOAD_FACTOR;
            putMapEntries(m, false);
        }
        final void putMapEntries(Map<? extends K, ? extends V> m, boolean evict) {
            int s = m.size();
            if (s > 0) {
                if (table == null) { // pre-size
                    float ft = ((float)s / loadFactor) + 1.0F;
                    int t = ((ft < (float)MAXIMUM_CAPACITY) ?
                             (int)ft : MAXIMUM_CAPACITY);
                    if (t > threshold)
                        threshold = tableSizeFor(t);
                }
                else if (s > threshold)
                    resize();
                for (Map.Entry<? extends K, ? extends V> e : m.entrySet()) {
                    K key = e.getKey();
                    V value = e.getValue();
                    putVal(hash(key), key, value, false, evict);
                }
            }
        }
        public int size() {
            return size;
        }
        public boolean isEmpty() {
            return size == 0;
        }
        public V get(Object key) {
            Node<K,V> e;
            return (e = getNode(hash(key), key)) == null ? null : e.value;
        }
        final Node<K,V> getNode(int hash, Object key) {
            Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
            if ((tab = table) != null && (n = tab.length) > 0 &&
                (first = tab[(n - 1) & hash]) != null) {
                if (first.hash == hash && // always check first node
                    ((k = first.key) == key || (key != null && key.equals(k))))
                    return first;
                if ((e = first.next) != null) {
                    if (first instanceof TreeNode)
                        return ((TreeNode<K,V>)first).getTreeNode(hash, key);
                    do {
                        if (e.hash == hash &&
                            ((k = e.key) == key || (key != null && key.equals(k))))
                            return e;
                    } while ((e = e.next) != null);
                }
            }
            return null;
        }
        public boolean containsKey(Object key) {
            return getNode(hash(key), key) != null;
        }
    
        //添加k-v对,如果hash一样key不同,执行冲突处理,用链表或红黑树存储冲突的节点,
        // 如果hash key 一样,value不同,替换原value
        //如果替换了原的value,返回原value,若是新加入的节点返回null
        public V put(K key, V value) {
            return putVal(hash(key), key, value, false, true);
        }
    
        /**
         * Implements Map.put and related methods.
         * @param onlyIfAbsent if true, don't change existing value
         * @param evict if false, the table is in creation mode.
         * @return previous value, or null if none
         */
        //HashMap加入元素的核心方法
        final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                       boolean evict) {
            Node<K,V>[] tab; Node<K,V> p; int n, i;
            if ((tab = table) == null || (n = tab.length) == 0)  //如果table为空,或者table.length等于0,需要扩容啊,不为空,直接往里面添加
                n = (tab = resize()).length;
            if ((p = tab[i = (n - 1) & hash]) == null)   // (n-1) & hash得到索引,该位置刚好为空,没有hash碰撞,放入。
                tab[i] = newNode(hash, key, value, null);
            else {   //发生碰撞
                Node<K,V> e; K k;
                if (p.hash == hash &&
                    ((k = p.key) == key || (key != null && key.equals(k))))  //如果hash key 都相等,先用e记住p
                    e = p;
                //就是hash碰撞
                else if (p instanceof TreeNode)         //如果p是TreeNode,说明当前已采用红黑树来处理碰撞
                    e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
                //采用链表来处理碰撞,当链表长度大于8时,将链表转成红黑树
                else {
                    for (int binCount = 0; ; ++binCount) {
                        if ((e = p.next) == null) {
                            p.next = newNode(hash, key, value, null);
                            if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                                treeifyBin(tab, hash);
                            break;
                        }  
                        if (e.hash == hash &&                  //key hash 相等
                            ((k = e.key) == key || (key != null && key.equals(k))))
                            break;
                        p = e;
                    }
                }
                if (e != null) { // existing mapping for key
                    V oldValue = e.value;  //key  hash 都相等,用新value更新老value
                    if (!onlyIfAbsent || oldValue == null)
                        e.value = value;
                    afterNodeAccess(e);
                    return oldValue;
                }
            }
            ++modCount;
            if (++size > threshold) //如果++size > threshould 扩容
                resize();
            afterNodeInsertion(evict);
            return null;
        }
    
        //resize 函数主要功能 为: 扩容 + 迁移,扩容是将HashMap容量扩大两倍,迁移是将老HashMap中的所有元素迁移到新扩容的HashMap中
        // 迁移保持原来的元素的相对顺序
        final Node<K,V>[] resize() {
            Node<K,V>[] oldTab = table;  
            int oldCap = (oldTab == null) ? 0 : oldTab.length; 
            int oldThr = threshold;
            int newCap, newThr = 0;
            //情况1: oldCap > 0
            if (oldCap > 0) {
                 //1.1: oldCap > (1<<30) 时,没法在扩大两倍,直接将threshold = Integer.MAX_VALUE;
                if (oldCap >= MAXIMUM_CAPACITY) {
                    threshold = Integer.MAX_VALUE;
                    return oldTab;
                }
                //1.2 : 可以正常扩容, newCap = oldCap<<1, newThr = oldThr << 1
                else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                         oldCap >= DEFAULT_INITIAL_CAPACITY)
                    newThr = oldThr << 1; // double threshold
            }
            //
            else if (oldThr > 0) // initial capacity was placed in threshold
                newCap = oldThr;
            else {               // zero initial threshold signifies using defaults
                newCap = DEFAULT_INITIAL_CAPACITY;
                newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
            }
            if (newThr == 0) {
                float ft = (float)newCap * loadFactor;
                newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                          (int)ft : Integer.MAX_VALUE);
            }
            threshold = newThr;
            @SuppressWarnings({"rawtypes","unchecked"})
            Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
            table = newTab;
            if (oldTab != null) {
                for (int j = 0; j < oldCap; ++j) {
                    Node<K,V> e;
                    if ((e = oldTab[j]) != null) {
                        oldTab[j] = null;
                        if (e.next == null)
                            newTab[e.hash & (newCap - 1)] = e;
                        else if (e instanceof TreeNode)
                            ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                        else { // preserve order
                            Node<K,V> loHead = null, loTail = null;
                            Node<K,V> hiHead = null, hiTail = null;
                            Node<K,V> next;
                            do {
                                next = e.next;
                                if ((e.hash & oldCap) == 0) {
                                    if (loTail == null)
                                        loHead = e;
                                    else
                                        loTail.next = e;
                                    loTail = e;
                                }
                                else {
                                    if (hiTail == null)
                                        hiHead = e;
                                    else
                                        hiTail.next = e;
                                    hiTail = e;
                                }
                            } while ((e = next) != null);
                            if (loTail != null) {
                                loTail.next = null;
                                newTab[j] = loHead;
                            }
                            if (hiTail != null) {
                                hiTail.next = null;
                                newTab[j + oldCap] = hiHead;
                            }
                        }
                    }
                }
            }
            return newTab;
        }
        //将链表转成红黑树,若哈希表长度 < 64 先扩容,为什么要先扩容呢?是因为类库设计者目前碰撞多了,可能是由于哈希表长度短了,没准扩容后,碰撞就会少点
        // 当然扩容后,仍可能继续碰撞哦
        final void treeifyBin(Node<K,V>[] tab, int hash) {
            int n, index; Node<K,V> e;
            if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)
                resize();
            else if ((e = tab[index = (n - 1) & hash]) != null) {  //扩容后还是原索引碰撞,链表转成红黑树
                TreeNode<K,V> hd = null, tl = null;
                do {
                    TreeNode<K,V> p = replacementTreeNode(e, null);
                    if (tl == null)
                        hd = p;
                    else {
                        p.prev = tl;
                        tl.next = p;
                    }
                    tl = p;
                } while ((e = e.next) != null);
                if ((tab[index] = hd) != null)
                    hd.treeify(tab);
            }
        }
        public void putAll(Map<? extends K, ? extends V> m) {
            putMapEntries(m, true);
        }
        public V remove(Object key) {
            Node<K,V> e;
            return (e = removeNode(hash(key), key, null, false, true)) == null ?
                null : e.value;
        }
        final Node<K,V> removeNode(int hash, Object key, Object value,
                                   boolean matchValue, boolean movable) {
            Node<K,V>[] tab; Node<K,V> p; int n, index;
            if ((tab = table) != null && (n = tab.length) > 0 &&
                (p = tab[index = (n - 1) & hash]) != null) {
                Node<K,V> node = null, e; K k; V v;
                if (p.hash == hash &&
                    ((k = p.key) == key || (key != null && key.equals(k))))
                    node = p;
                else if ((e = p.next) != null) {
                    if (p instanceof TreeNode)
                        node = ((TreeNode<K,V>)p).getTreeNode(hash, key);
                    else {
                        do {
                            if (e.hash == hash &&
                                ((k = e.key) == key ||
                                 (key != null && key.equals(k)))) {
                                node = e;
                                break;
                            }
                            p = e;
                        } while ((e = e.next) != null);
                    }
                }
                if (node != null && (!matchValue || (v = node.value) == value ||
                                     (value != null && value.equals(v)))) {
                    if (node instanceof TreeNode)
                        ((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);
                    else if (node == p)
                        tab[index] = node.next;
                    else
                        p.next = node.next;
                    ++modCount;
                    --size;
                    afterNodeRemoval(node);
                    return node;
                }
            }
            return null;
        }
        public void clear() {
            Node<K,V>[] tab;
            modCount++;
            if ((tab = table) != null && size > 0) {
                size = 0;
                for (int i = 0; i < tab.length; ++i)
                    tab[i] = null;
            }
        }
        public boolean containsValue(Object value) {
            Node<K,V>[] tab; V v;
            if ((tab = table) != null && size > 0) {
                for (int i = 0; i < tab.length; ++i) {
                    for (Node<K,V> e = tab[i]; e != null; e = e.next) {
                        if ((v = e.value) == value ||
                            (value != null && value.equals(v)))
                            return true;
                    }
                }
            }
            return false;
        }
        public Set<K> keySet() {
            Set<K> ks = keySet;
            if (ks == null) {
                ks = new KeySet();
                keySet = ks;
            }
            return ks;
        }
    
        final class KeySet extends AbstractSet<K> {
            public final int size()                 { return size; }
            public final void clear()               { HashMap.this.clear(); }
            public final Iterator<K> iterator()     { return new KeyIterator(); }
            public final boolean contains(Object o) { return containsKey(o); }
            public final boolean remove(Object key) {
                return removeNode(hash(key), key, null, false, true) != null;
            }
            public final Spliterator<K> spliterator() {
                return new KeySpliterator<>(HashMap.this, 0, -1, 0, 0);
            }
            public final void forEach(Consumer<? super K> action) {
                Node<K,V>[] tab;
                if (action == null)
                    throw new NullPointerException();
                if (size > 0 && (tab = table) != null) {
                    int mc = modCount;
                    for (int i = 0; i < tab.length; ++i) {
                        for (Node<K,V> e = tab[i]; e != null; e = e.next)
                            action.accept(e.key);
                    }
                    if (modCount != mc)
                        throw new ConcurrentModificationException();
                }
            }
        }
        public Collection<V> values() {
            Collection<V> vs = values;
            if (vs == null) {
                vs = new Values();
                values = vs;
            }
            return vs;
        }
    
        final class Values extends AbstractCollection<V> {
            public final int size()                 { return size; }
            public final void clear()               { HashMap.this.clear(); }
            public final Iterator<V> iterator()     { return new ValueIterator(); }
            public final boolean contains(Object o) { return containsValue(o); }
            public final Spliterator<V> spliterator() {
                return new ValueSpliterator<>(HashMap.this, 0, -1, 0, 0);
            }
            public final void forEach(Consumer<? super V> action) {
                Node<K,V>[] tab;
                if (action == null)
                    throw new NullPointerException();
                if (size > 0 && (tab = table) != null) {
                    int mc = modCount;
                    for (int i = 0; i < tab.length; ++i) {
                        for (Node<K,V> e = tab[i]; e != null; e = e.next)
                            action.accept(e.value);
                    }
                    if (modCount != mc)
                        throw new ConcurrentModificationException();
                }
            }
        }
        public Set<Map.Entry<K,V>> entrySet() {
            Set<Map.Entry<K,V>> es;
            return (es = entrySet) == null ? (entrySet = new EntrySet()) : es;
        }
    
        final class EntrySet extends AbstractSet<Map.Entry<K,V>> {
            public final int size()                 { return size; }
            public final void clear()               { HashMap.this.clear(); }
            public final Iterator<Map.Entry<K,V>> iterator() {
                return new EntryIterator();
            }
            public final boolean contains(Object o) {
                if (!(o instanceof Map.Entry))
                    return false;
                Map.Entry<?,?> e = (Map.Entry<?,?>) o;
                Object key = e.getKey();
                Node<K,V> candidate = getNode(hash(key), key);
                return candidate != null && candidate.equals(e);
            }
            public final boolean remove(Object o) {
                if (o instanceof Map.Entry) {
                    Map.Entry<?,?> e = (Map.Entry<?,?>) o;
                    Object key = e.getKey();
                    Object value = e.getValue();
                    return removeNode(hash(key), key, value, true, true) != null;
                }
                return false;
            }
            public final Spliterator<Map.Entry<K,V>> spliterator() {
                return new EntrySpliterator<>(HashMap.this, 0, -1, 0, 0);
            }
            public final void forEach(Consumer<? super Map.Entry<K,V>> action) {
                Node<K,V>[] tab;
                if (action == null)
                    throw new NullPointerException();
                if (size > 0 && (tab = table) != null) {
                    int mc = modCount;
                    for (int i = 0; i < tab.length; ++i) {
                        for (Node<K,V> e = tab[i]; e != null; e = e.next)
                            action.accept(e);
                    }
                    if (modCount != mc)
                        throw new ConcurrentModificationException();
                }
            }
        }
    
        // Overrides of JDK8 Map extension methods
        @Override
        public V getOrDefault(Object key, V defaultValue) {
            Node<K,V> e;
            return (e = getNode(hash(key), key)) == null ? defaultValue : e.value;
        }
    
        @Override
        public V putIfAbsent(K key, V value) {
            return putVal(hash(key), key, value, true, true);
        }
    
        @Override
        public boolean remove(Object key, Object value) {
            return removeNode(hash(key), key, value, true, true) != null;
        }
    
        @Override
        public boolean replace(K key, V oldValue, V newValue) {
            Node<K,V> e; V v;
            if ((e = getNode(hash(key), key)) != null &&
                ((v = e.value) == oldValue || (v != null && v.equals(oldValue)))) {
                e.value = newValue;
                afterNodeAccess(e);
                return true;
            }
            return false;
        }
    
        @Override
        public V replace(K key, V value) {
            Node<K,V> e;
            if ((e = getNode(hash(key), key)) != null) {
                V oldValue = e.value;
                e.value = value;
                afterNodeAccess(e);
                return oldValue;
            }
            return null;
        }
    
        @Override
        public V computeIfAbsent(K key,
                                 Function<? super K, ? extends V> mappingFunction) {
            if (mappingFunction == null)
                throw new NullPointerException();
            int hash = hash(key);
            Node<K,V>[] tab; Node<K,V> first; int n, i;
            int binCount = 0;
            TreeNode<K,V> t = null;
            Node<K,V> old = null;
            if (size > threshold || (tab = table) == null ||
                (n = tab.length) == 0)
                n = (tab = resize()).length;
            if ((first = tab[i = (n - 1) & hash]) != null) {
                if (first instanceof TreeNode)
                    old = (t = (TreeNode<K,V>)first).getTreeNode(hash, key);
                else {
                    Node<K,V> e = first; K k;
                    do {
                        if (e.hash == hash &&
                            ((k = e.key) == key || (key != null && key.equals(k)))) {
                            old = e;
                            break;
                        }
                        ++binCount;
                    } while ((e = e.next) != null);
                }
                V oldValue;
                if (old != null && (oldValue = old.value) != null) {
                    afterNodeAccess(old);
                    return oldValue;
                }
            }
            V v = mappingFunction.apply(key);
            if (v == null) {
                return null;
            } else if (old != null) {
                old.value = v;
                afterNodeAccess(old);
                return v;
            }
            else if (t != null)
                t.putTreeVal(this, tab, hash, key, v);
            else {
                tab[i] = newNode(hash, key, v, first);
                if (binCount >= TREEIFY_THRESHOLD - 1)
                    treeifyBin(tab, hash);
            }
            ++modCount;
            ++size;
            afterNodeInsertion(true);
            return v;
        }
    
        public V computeIfPresent(K key,
                                  BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
            if (remappingFunction == null)
                throw new NullPointerException();
            Node<K,V> e; V oldValue;
            int hash = hash(key);
            if ((e = getNode(hash, key)) != null &&
                (oldValue = e.value) != null) {
                V v = remappingFunction.apply(key, oldValue);
                if (v != null) {
                    e.value = v;
                    afterNodeAccess(e);
                    return v;
                }
                else
                    removeNode(hash, key, null, false, true);
            }
            return null;
        }
    
        @Override
        public V compute(K key,
                         BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
            if (remappingFunction == null)
                throw new NullPointerException();
            int hash = hash(key);
            Node<K,V>[] tab; Node<K,V> first; int n, i;
            int binCount = 0;
            TreeNode<K,V> t = null;
            Node<K,V> old = null;
            if (size > threshold || (tab = table) == null ||
                (n = tab.length) == 0)
                n = (tab = resize()).length;
            if ((first = tab[i = (n - 1) & hash]) != null) {
                if (first instanceof TreeNode)
                    old = (t = (TreeNode<K,V>)first).getTreeNode(hash, key);
                else {
                    Node<K,V> e = first; K k;
                    do {
                        if (e.hash == hash &&
                            ((k = e.key) == key || (key != null && key.equals(k)))) {
                            old = e;
                            break;
                        }
                        ++binCount;
                    } while ((e = e.next) != null);
                }
            }
            V oldValue = (old == null) ? null : old.value;
            V v = remappingFunction.apply(key, oldValue);
            if (old != null) {
                if (v != null) {
                    old.value = v;
                    afterNodeAccess(old);
                }
                else
                    removeNode(hash, key, null, false, true);
            }
            else if (v != null) {
                if (t != null)
                    t.putTreeVal(this, tab, hash, key, v);
                else {
                    tab[i] = newNode(hash, key, v, first);
                    if (binCount >= TREEIFY_THRESHOLD - 1)
                        treeifyBin(tab, hash);
                }
                ++modCount;
                ++size;
                afterNodeInsertion(true);
            }
            return v;
        }
    
        @Override
        public V merge(K key, V value,
                       BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
            if (value == null)
                throw new NullPointerException();
            if (remappingFunction == null)
                throw new NullPointerException();
            int hash = hash(key);
            Node<K,V>[] tab; Node<K,V> first; int n, i;
            int binCount = 0;
            TreeNode<K,V> t = null;
            Node<K,V> old = null;
            if (size > threshold || (tab = table) == null ||
                (n = tab.length) == 0)
                n = (tab = resize()).length;
            if ((first = tab[i = (n - 1) & hash]) != null) {
                if (first instanceof TreeNode)
                    old = (t = (TreeNode<K,V>)first).getTreeNode(hash, key);
                else {
                    Node<K,V> e = first; K k;
                    do {
                        if (e.hash == hash &&
                            ((k = e.key) == key || (key != null && key.equals(k)))) {
                            old = e;
                            break;
                        }
                        ++binCount;
                    } while ((e = e.next) != null);
                }
            }
            if (old != null) {
                V v;
                if (old.value != null)
                    v = remappingFunction.apply(old.value, value);
                else
                    v = value;
                if (v != null) {
                    old.value = v;
                    afterNodeAccess(old);
                }
                else
                    removeNode(hash, key, null, false, true);
                return v;
            }
            if (value != null) {
                if (t != null)
                    t.putTreeVal(this, tab, hash, key, value);
                else {
                    tab[i] = newNode(hash, key, value, first);
                    if (binCount >= TREEIFY_THRESHOLD - 1)
                        treeifyBin(tab, hash);
                }
                ++modCount;
                ++size;
                afterNodeInsertion(true);
            }
            return value;
        }
    
        @Override
        public void forEach(BiConsumer<? super K, ? super V> action) {
            Node<K,V>[] tab;
            if (action == null)
                throw new NullPointerException();
            if (size > 0 && (tab = table) != null) {
                int mc = modCount;
                for (int i = 0; i < tab.length; ++i) {
                    for (Node<K,V> e = tab[i]; e != null; e = e.next)
                        action.accept(e.key, e.value);
                }
                if (modCount != mc)
                    throw new ConcurrentModificationException();
            }
        }
    
        @Override
        public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
            Node<K,V>[] tab;
            if (function == null)
                throw new NullPointerException();
            if (size > 0 && (tab = table) != null) {
                int mc = modCount;
                for (int i = 0; i < tab.length; ++i) {
                    for (Node<K,V> e = tab[i]; e != null; e = e.next) {
                        e.value = function.apply(e.key, e.value);
                    }
                }
                if (modCount != mc)
                    throw new ConcurrentModificationException();
            }
        }
    
        /* ------------------------------------------------------------ */
        // Cloning and serialization
        @SuppressWarnings("unchecked")
        @Override
        public Object clone() {
            HashMap<K,V> result;
            try {
                result = (HashMap<K,V>)super.clone();
            } catch (CloneNotSupportedException e) {
                // this shouldn't happen, since we are Cloneable
                throw new InternalError(e);
            }
            result.reinitialize();
            result.putMapEntries(this, false);
            return result;
        }
    
        // These methods are also used when serializing HashSets
        final float loadFactor() { return loadFactor; }
        final int capacity() {
            return (table != null) ? table.length :
                (threshold > 0) ? threshold :
                DEFAULT_INITIAL_CAPACITY;
        }
        private void writeObject(java.io.ObjectOutputStream s)
            throws IOException {
            int buckets = capacity();
            // Write out the threshold, loadfactor, and any hidden stuff
            s.defaultWriteObject();
            s.writeInt(buckets);
            s.writeInt(size);
            internalWriteEntries(s);
        }
        private void readObject(java.io.ObjectInputStream s)
            throws IOException, ClassNotFoundException {
            // Read in the threshold (ignored), loadfactor, and any hidden stuff
            s.defaultReadObject();
            reinitialize();
            if (loadFactor <= 0 || Float.isNaN(loadFactor))
                throw new InvalidObjectException("Illegal load factor: " +
                                                 loadFactor);
            s.readInt();                // Read and ignore number of buckets
            int mappings = s.readInt(); // Read number of mappings (size)
            if (mappings < 0)
                throw new InvalidObjectException("Illegal mappings count: " +
                                                 mappings);
            else if (mappings > 0) { // (if zero, use defaults)
                // Size the table using given load factor only if within
                // range of 0.25...4.0
                float lf = Math.min(Math.max(0.25f, loadFactor), 4.0f);
                float fc = (float)mappings / lf + 1.0f;
                int cap = ((fc < DEFAULT_INITIAL_CAPACITY) ?
                           DEFAULT_INITIAL_CAPACITY :
                           (fc >= MAXIMUM_CAPACITY) ?
                           MAXIMUM_CAPACITY :
                           tableSizeFor((int)fc));
                float ft = (float)cap * lf;
                threshold = ((cap < MAXIMUM_CAPACITY && ft < MAXIMUM_CAPACITY) ?
                             (int)ft : Integer.MAX_VALUE);
    
                // Check Map.Entry[].class since it's the nearest public type to
                // what we're actually creating.
                SharedSecrets.getJavaOISAccess().checkArray(s, Map.Entry[].class, cap);
                @SuppressWarnings({"rawtypes","unchecked"})
                Node<K,V>[] tab = (Node<K,V>[])new Node[cap];
                table = tab;
    
                // Read the keys and values, and put the mappings in the HashMap
                for (int i = 0; i < mappings; i++) {
                    @SuppressWarnings("unchecked")
                        K key = (K) s.readObject();
                    @SuppressWarnings("unchecked")
                        V value = (V) s.readObject();
                    putVal(hash(key), key, value, false, false);
                }
            }
        }
    
        /* ------------------------------------------------------------ */
        // iterators
    
        abstract class HashIterator {
            Node<K,V> next;        // next entry to return
            Node<K,V> current;     // current entry
            int expectedModCount;  // for fast-fail
            int index;             // current slot
    
            HashIterator() {
                expectedModCount = modCount;
                Node<K,V>[] t = table;
                current = next = null;
                index = 0;
                if (t != null && size > 0) { // advance to first entry
                    do {} while (index < t.length && (next = t[index++]) == null);
                }
            }
    
            public final boolean hasNext() {
                return next != null;
            }
    
            final Node<K,V> nextNode() {
                Node<K,V>[] t;
                Node<K,V> e = next;
                if (modCount != expectedModCount)
                    throw new ConcurrentModificationException();
                if (e == null)
                    throw new NoSuchElementException();
                if ((next = (current = e).next) == null && (t = table) != null) {
                    do {} while (index < t.length && (next = t[index++]) == null);
                }
                return e;
            }
    
            public final void remove() {
                Node<K,V> p = current;
                if (p == null)
                    throw new IllegalStateException();
                if (modCount != expectedModCount)
                    throw new ConcurrentModificationException();
                current = null;
                K key = p.key;
                removeNode(hash(key), key, null, false, false);
                expectedModCount = modCount;
            }
        }
    
        final class KeyIterator extends HashIterator
            implements Iterator<K> {
            public final K next() { return nextNode().key; }
        }
    
        final class ValueIterator extends HashIterator
            implements Iterator<V> {
            public final V next() { return nextNode().value; }
        }
    
        final class EntryIterator extends HashIterator
            implements Iterator<Map.Entry<K,V>> {
            public final Map.Entry<K,V> next() { return nextNode(); }
        }
    
        /* ------------------------------------------------------------ */
        // spliterators
    
        static class HashMapSpliterator<K,V> {
            final HashMap<K,V> map;
            Node<K,V> current;          // current node
            int index;                  // current index, modified on advance/split
            int fence;                  // one past last index
            int est;                    // size estimate
            int expectedModCount;       // for comodification checks
    
            HashMapSpliterator(HashMap<K,V> m, int origin,
                               int fence, int est,
                               int expectedModCount) {
                this.map = m;
                this.index = origin;
                this.fence = fence;
                this.est = est;
                this.expectedModCount = expectedModCount;
            }
    
            final int getFence() { // initialize fence and size on first use
                int hi;
                if ((hi = fence) < 0) {
                    HashMap<K,V> m = map;
                    est = m.size;
                    expectedModCount = m.modCount;
                    Node<K,V>[] tab = m.table;
                    hi = fence = (tab == null) ? 0 : tab.length;
                }
                return hi;
            }
    
            public final long estimateSize() {
                getFence(); // force init
                return (long) est;
            }
        }
    
        static final class KeySpliterator<K,V>
            extends HashMapSpliterator<K,V>
            implements Spliterator<K> {
            KeySpliterator(HashMap<K,V> m, int origin, int fence, int est,
                           int expectedModCount) {
                super(m, origin, fence, est, expectedModCount);
            }
    
            public KeySpliterator<K,V> trySplit() {
                int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
                return (lo >= mid || current != null) ? null :
                    new KeySpliterator<>(map, lo, index = mid, est >>>= 1,
                                            expectedModCount);
            }
    
            public void forEachRemaining(Consumer<? super K> action) {
                int i, hi, mc;
                if (action == null)
                    throw new NullPointerException();
                HashMap<K,V> m = map;
                Node<K,V>[] tab = m.table;
                if ((hi = fence) < 0) {
                    mc = expectedModCount = m.modCount;
                    hi = fence = (tab == null) ? 0 : tab.length;
                }
                else
                    mc = expectedModCount;
                if (tab != null && tab.length >= hi &&
                    (i = index) >= 0 && (i < (index = hi) || current != null)) {
                    Node<K,V> p = current;
                    current = null;
                    do {
                        if (p == null)
                            p = tab[i++];
                        else {
                            action.accept(p.key);
                            p = p.next;
                        }
                    } while (p != null || i < hi);
                    if (m.modCount != mc)
                        throw new ConcurrentModificationException();
                }
            }
    
            public boolean tryAdvance(Consumer<? super K> action) {
                int hi;
                if (action == null)
                    throw new NullPointerException();
                Node<K,V>[] tab = map.table;
                if (tab != null && tab.length >= (hi = getFence()) && index >= 0) {
                    while (current != null || index < hi) {
                        if (current == null)
                            current = tab[index++];
                        else {
                            K k = current.key;
                            current = current.next;
                            action.accept(k);
                            if (map.modCount != expectedModCount)
                                throw new ConcurrentModificationException();
                            return true;
                        }
                    }
                }
                return false;
            }
    
            public int characteristics() {
                return (fence < 0 || est == map.size ? Spliterator.SIZED : 0) |
                    Spliterator.DISTINCT;
            }
        }
    
        static final class ValueSpliterator<K,V>
            extends HashMapSpliterator<K,V>
            implements Spliterator<V> {
            ValueSpliterator(HashMap<K,V> m, int origin, int fence, int est,
                             int expectedModCount) {
                super(m, origin, fence, est, expectedModCount);
            }
    
            public ValueSpliterator<K,V> trySplit() {
                int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
                return (lo >= mid || current != null) ? null :
                    new ValueSpliterator<>(map, lo, index = mid, est >>>= 1,
                                              expectedModCount);
            }
    
            public void forEachRemaining(Consumer<? super V> action) {
                int i, hi, mc;
                if (action == null)
                    throw new NullPointerException();
                HashMap<K,V> m = map;
                Node<K,V>[] tab = m.table;
                if ((hi = fence) < 0) {
                    mc = expectedModCount = m.modCount;
                    hi = fence = (tab == null) ? 0 : tab.length;
                }
                else
                    mc = expectedModCount;
                if (tab != null && tab.length >= hi &&
                    (i = index) >= 0 && (i < (index = hi) || current != null)) {
                    Node<K,V> p = current;
                    current = null;
                    do {
                        if (p == null)
                            p = tab[i++];
                        else {
                            action.accept(p.value);
                            p = p.next;
                        }
                    } while (p != null || i < hi);
                    if (m.modCount != mc)
                        throw new ConcurrentModificationException();
                }
            }
    
            public boolean tryAdvance(Consumer<? super V> action) {
                int hi;
                if (action == null)
                    throw new NullPointerException();
                Node<K,V>[] tab = map.table;
                if (tab != null && tab.length >= (hi = getFence()) && index >= 0) {
                    while (current != null || index < hi) {
                        if (current == null)
                            current = tab[index++];
                        else {
                            V v = current.value;
                            current = current.next;
                            action.accept(v);
                            if (map.modCount != expectedModCount)
                                throw new ConcurrentModificationException();
                            return true;
                        }
                    }
                }
                return false;
            }
    
            public int characteristics() {
                return (fence < 0 || est == map.size ? Spliterator.SIZED : 0);
            }
        }
    
        static final class EntrySpliterator<K,V>
            extends HashMapSpliterator<K,V>
            implements Spliterator<Map.Entry<K,V>> {
            EntrySpliterator(HashMap<K,V> m, int origin, int fence, int est,
                             int expectedModCount) {
                super(m, origin, fence, est, expectedModCount);
            }
    
            public EntrySpliterator<K,V> trySplit() {
                int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
                return (lo >= mid || current != null) ? null :
                    new EntrySpliterator<>(map, lo, index = mid, est >>>= 1,
                                              expectedModCount);
            }
    
            public void forEachRemaining(Consumer<? super Map.Entry<K,V>> action) {
                int i, hi, mc;
                if (action == null)
                    throw new NullPointerException();
                HashMap<K,V> m = map;
                Node<K,V>[] tab = m.table;
                if ((hi = fence) < 0) {
                    mc = expectedModCount = m.modCount;
                    hi = fence = (tab == null) ? 0 : tab.length;
                }
                else
                    mc = expectedModCount;
                if (tab != null && tab.length >= hi &&
                    (i = index) >= 0 && (i < (index = hi) || current != null)) {
                    Node<K,V> p = current;
                    current = null;
                    do {
                        if (p == null)
                            p = tab[i++];
                        else {
                            action.accept(p);
                            p = p.next;
                        }
                    } while (p != null || i < hi);
                    if (m.modCount != mc)
                        throw new ConcurrentModificationException();
                }
            }
    
            public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {
                int hi;
                if (action == null)
                    throw new NullPointerException();
                Node<K,V>[] tab = map.table;
                if (tab != null && tab.length >= (hi = getFence()) && index >= 0) {
                    while (current != null || index < hi) {
                        if (current == null)
                            current = tab[index++];
                        else {
                            Node<K,V> e = current;
                            current = current.next;
                            action.accept(e);
                            if (map.modCount != expectedModCount)
                                throw new ConcurrentModificationException();
                            return true;
                        }
                    }
                }
                return false;
            }
    
            public int characteristics() {
                return (fence < 0 || est == map.size ? Spliterator.SIZED : 0) |
                    Spliterator.DISTINCT;
            }
        }
    
        /* ------------------------------------------------------------ */
        // LinkedHashMap support
    
        // Create a regular (non-tree) node
        Node<K,V> newNode(int hash, K key, V value, Node<K,V> next) {
            return new Node<>(hash, key, value, next);
        }
        // For conversion from TreeNodes to plain nodes
        Node<K,V> replacementNode(Node<K,V> p, Node<K,V> next) {
            return new Node<>(p.hash, p.key, p.value, next);
        }
    
        // Create a tree bin node
        TreeNode<K,V> newTreeNode(int hash, K key, V value, Node<K,V> next) {
            return new TreeNode<>(hash, key, value, next);
        }
    
        // For treeifyBin
        TreeNode<K,V> replacementTreeNode(Node<K,V> p, Node<K,V> next) {
            return new TreeNode<>(p.hash, p.key, p.value, next);
        }
    
        /**
         * Reset to initial default state.  Called by clone and readObject.
         */
        void reinitialize() {
            table = null;
            entrySet = null;
            keySet = null;
            values = null;
            modCount = 0;
            threshold = 0;
            size = 0;
        }
    
        // Callbacks to allow LinkedHashMap post-actions
        void afterNodeAccess(Node<K,V> p) { }
        void afterNodeInsertion(boolean evict) { }
        void afterNodeRemoval(Node<K,V> p) { }
    
        // Called only from writeObject, to ensure compatible ordering.
        void internalWriteEntries(java.io.ObjectOutputStream s) throws IOException {
            Node<K,V>[] tab;
            if (size > 0 && (tab = table) != null) {
                for (int i = 0; i < tab.length; ++i) {
                    for (Node<K,V> e = tab[i]; e != null; e = e.next) {
                        s.writeObject(e.key);
                        s.writeObject(e.value);
                    }
                }
            }
        }
    
        /* ------------------------------------------------------------ */
        // Tree bins
    
        /**
         * Entry for Tree bins. Extends LinkedHashMap.Entry (which in turn
         * extends Node) so can be used as extension of either regular or
         * linked node.
         */
        static final class TreeNode<K,V> extends LinkedHashMap.Entry<K,V> {
            TreeNode<K,V> parent;  // red-black tree links
            TreeNode<K,V> left;
            TreeNode<K,V> right;
            TreeNode<K,V> prev;    // needed to unlink next upon deletion
            boolean red;
            TreeNode(int hash, K key, V val, Node<K,V> next) {
                super(hash, key, val, next);
            }
    
            /**
             * Returns root of tree containing this node.
             */
            final TreeNode<K,V> root() {
                for (TreeNode<K,V> r = this, p;;) {
                    if ((p = r.parent) == null)
                        return r;
                    r = p;
                }
            }
    
            /**
             * Ensures that the given root is the first node of its bin.
             */
            static <K,V> void moveRootToFront(Node<K,V>[] tab, TreeNode<K,V> root) {
                int n;
                if (root != null && tab != null && (n = tab.length) > 0) {
                    int index = (n - 1) & root.hash;
                    TreeNode<K,V> first = (TreeNode<K,V>)tab[index];
                    if (root != first) {
                        Node<K,V> rn;
                        tab[index] = root;
                        TreeNode<K,V> rp = root.prev;
                        if ((rn = root.next) != null)
                            ((TreeNode<K,V>)rn).prev = rp;
                        if (rp != null)
                            rp.next = rn;
                        if (first != null)
                            first.prev = root;
                        root.next = first;
                        root.prev = null;
                    }
                    assert checkInvariants(root);
                }
            }
    
            /**
             * Finds the node starting at root p with the given hash and key.
             * The kc argument caches comparableClassFor(key) upon first use
             * comparing keys.
             */
            final TreeNode<K,V> find(int h, Object k, Class<?> kc) {
                TreeNode<K,V> p = this;
                do {
                    int ph, dir; K pk;
                    TreeNode<K,V> pl = p.left, pr = p.right, q;
                    if ((ph = p.hash) > h)
                        p = pl;
                    else if (ph < h)
                        p = pr;
                    else if ((pk = p.key) == k || (k != null && k.equals(pk)))
                        return p;
                    else if (pl == null)
                        p = pr;
                    else if (pr == null)
                        p = pl;
                    else if ((kc != null ||
                              (kc = comparableClassFor(k)) != null) &&
                             (dir = compareComparables(kc, k, pk)) != 0)
                        p = (dir < 0) ? pl : pr;
                    else if ((q = pr.find(h, k, kc)) != null)
                        return q;
                    else
                        p = pl;
                } while (p != null);
                return null;
            }
    
            /**
             * Calls find for root node.
             */
            final TreeNode<K,V> getTreeNode(int h, Object k) {
                return ((parent != null) ? root() : this).find(h, k, null);
            }
    
            /**
             * Tie-breaking utility for ordering insertions when equal
             * hashCodes and non-comparable. We don't require a total
             * order, just a consistent insertion rule to maintain
             * equivalence across rebalancings. Tie-breaking further than
             * necessary simplifies testing a bit.
             */
            static int tieBreakOrder(Object a, Object b) {
                int d;
                if (a == null || b == null ||
                    (d = a.getClass().getName().
                     compareTo(b.getClass().getName())) == 0)
                    d = (System.identityHashCode(a) <= System.identityHashCode(b) ?
                         -1 : 1);
                return d;
            }
    
            /**
             * Forms tree of the nodes linked from this node.
             */
            final void treeify(Node<K,V>[] tab) {
                TreeNode<K,V> root = null;
                for (TreeNode<K,V> x = this, next; x != null; x = next) {
                    next = (TreeNode<K,V>)x.next;
                    x.left = x.right = null;
                    if (root == null) {
                        x.parent = null;
                        x.red = false;
                        root = x;
                    }
                    else {
                        K k = x.key;
                        int h = x.hash;
                        Class<?> kc = null;
                        for (TreeNode<K,V> p = root;;) {
                            int dir, ph;
                            K pk = p.key;
                            if ((ph = p.hash) > h)
                                dir = -1;
                            else if (ph < h)
                                dir = 1;
                            else if ((kc == null &&
                                      (kc = comparableClassFor(k)) == null) ||
                                     (dir = compareComparables(kc, k, pk)) == 0)
                                dir = tieBreakOrder(k, pk);
    
                            TreeNode<K,V> xp = p;
                            if ((p = (dir <= 0) ? p.left : p.right) == null) {
                                x.parent = xp;
                                if (dir <= 0)
                                    xp.left = x;
                                else
                                    xp.right = x;
                                root = balanceInsertion(root, x);
                                break;
                            }
                        }
                    }
                }
                moveRootToFront(tab, root);
            }
    
            /**
             * Returns a list of non-TreeNodes replacing those linked from
             * this node.
             */
            final Node<K,V> untreeify(HashMap<K,V> map) {
                Node<K,V> hd = null, tl = null;
                for (Node<K,V> q = this; q != null; q = q.next) {
                    Node<K,V> p = map.replacementNode(q, null);
                    if (tl == null)
                        hd = p;
                    else
                        tl.next = p;
                    tl = p;
                }
                return hd;
            }
    
            /**
             * Tree version of putVal.
             */
            final TreeNode<K,V> putTreeVal(HashMap<K,V> map, Node<K,V>[] tab,
                                           int h, K k, V v) {
                Class<?> kc = null;
                boolean searched = false;
                TreeNode<K,V> root = (parent != null) ? root() : this;
                for (TreeNode<K,V> p = root;;) {
                    int dir, ph; K pk;
                    if ((ph = p.hash) > h)
                        dir = -1;
                    else if (ph < h)
                        dir = 1;
                    else if ((pk = p.key) == k || (k != null && k.equals(pk)))
                        return p;
                    else if ((kc == null &&
                              (kc = comparableClassFor(k)) == null) ||
                             (dir = compareComparables(kc, k, pk)) == 0) {
                        if (!searched) {
                            TreeNode<K,V> q, ch;
                            searched = true;
                            if (((ch = p.left) != null &&
                                 (q = ch.find(h, k, kc)) != null) ||
                                ((ch = p.right) != null &&
                                 (q = ch.find(h, k, kc)) != null))
                                return q;
                        }
                        dir = tieBreakOrder(k, pk);
                    }
    
                    TreeNode<K,V> xp = p;
                    if ((p = (dir <= 0) ? p.left : p.right) == null) {
                        Node<K,V> xpn = xp.next;
                        TreeNode<K,V> x = map.newTreeNode(h, k, v, xpn);
                        if (dir <= 0)
                            xp.left = x;
                        else
                            xp.right = x;
                        xp.next = x;
                        x.parent = x.prev = xp;
                        if (xpn != null)
                            ((TreeNode<K,V>)xpn).prev = x;
                        moveRootToFront(tab, balanceInsertion(root, x));
                        return null;
                    }
                }
            }
    
            /**
             * Removes the given node, that must be present before this call.
             * This is messier than typical red-black deletion code because we
             * cannot swap the contents of an interior node with a leaf
             * successor that is pinned by "next" pointers that are accessible
             * independently during traversal. So instead we swap the tree
             * linkages. If the current tree appears to have too few nodes,
             * the bin is converted back to a plain bin. (The test triggers
             * somewhere between 2 and 6 nodes, depending on tree structure).
             */
            final void removeTreeNode(HashMap<K,V> map, Node<K,V>[] tab,
                                      boolean movable) {
                int n;
                if (tab == null || (n = tab.length) == 0)
                    return;
                int index = (n - 1) & hash;
                TreeNode<K,V> first = (TreeNode<K,V>)tab[index], root = first, rl;
                TreeNode<K,V> succ = (TreeNode<K,V>)next, pred = prev;
                if (pred == null)
                    tab[index] = first = succ;
                else
                    pred.next = succ;
                if (succ != null)
                    succ.prev = pred;
                if (first == null)
                    return;
                if (root.parent != null)
                    root = root.root();
                if (root == null
                    || (movable
                        && (root.right == null
                            || (rl = root.left) == null
                            || rl.left == null))) {
                    tab[index] = first.untreeify(map);  // too small
                    return;
                }
                TreeNode<K,V> p = this, pl = left, pr = right, replacement;
                if (pl != null && pr != null) {
                    TreeNode<K,V> s = pr, sl;
                    while ((sl = s.left) != null) // find successor
                        s = sl;
                    boolean c = s.red; s.red = p.red; p.red = c; // swap colors
                    TreeNode<K,V> sr = s.right;
                    TreeNode<K,V> pp = p.parent;
                    if (s == pr) { // p was s's direct parent
                        p.parent = s;
                        s.right = p;
                    }
                    else {
                        TreeNode<K,V> sp = s.parent;
                        if ((p.parent = sp) != null) {
                            if (s == sp.left)
                                sp.left = p;
                            else
                                sp.right = p;
                        }
                        if ((s.right = pr) != null)
                            pr.parent = s;
                    }
                    p.left = null;
                    if ((p.right = sr) != null)
                        sr.parent = p;
                    if ((s.left = pl) != null)
                        pl.parent = s;
                    if ((s.parent = pp) == null)
                        root = s;
                    else if (p == pp.left)
                        pp.left = s;
                    else
                        pp.right = s;
                    if (sr != null)
                        replacement = sr;
                    else
                        replacement = p;
                }
                else if (pl != null)
                    replacement = pl;
                else if (pr != null)
                    replacement = pr;
                else
                    replacement = p;
                if (replacement != p) {
                    TreeNode<K,V> pp = replacement.parent = p.parent;
                    if (pp == null)
                        root = replacement;
                    else if (p == pp.left)
                        pp.left = replacement;
                    else
                        pp.right = replacement;
                    p.left = p.right = p.parent = null;
                }
    
                TreeNode<K,V> r = p.red ? root : balanceDeletion(root, replacement);
    
                if (replacement == p) {  // detach
                    TreeNode<K,V> pp = p.parent;
                    p.parent = null;
                    if (pp != null) {
                        if (p == pp.left)
                            pp.left = null;
                        else if (p == pp.right)
                            pp.right = null;
                    }
                }
                if (movable)
                    moveRootToFront(tab, r);
            }
    
            /**
             * Splits nodes in a tree bin into lower and upper tree bins,
             * or untreeifies if now too small. Called only from resize;
             * see above discussion about split bits and indices.
             *
             * @param map the map
             * @param tab the table for recording bin heads
             * @param index the index of the table being split
             * @param bit the bit of hash to split on
             */
            final void split(HashMap<K,V> map, Node<K,V>[] tab, int index, int bit) {
                TreeNode<K,V> b = this;
                // Relink into lo and hi lists, preserving order
                TreeNode<K,V> loHead = null, loTail = null;
                TreeNode<K,V> hiHead = null, hiTail = null;
                int lc = 0, hc = 0;
                for (TreeNode<K,V> e = b, next; e != null; e = next) {
                    next = (TreeNode<K,V>)e.next;
                    e.next = null;
                    if ((e.hash & bit) == 0) {
                        if ((e.prev = loTail) == null)
                            loHead = e;
                        else
                            loTail.next = e;
                        loTail = e;
                        ++lc;
                    }
                    else {
                        if ((e.prev = hiTail) == null)
                            hiHead = e;
                        else
                            hiTail.next = e;
                        hiTail = e;
                        ++hc;
                    }
                }
    
                if (loHead != null) {
                    if (lc <= UNTREEIFY_THRESHOLD)
                        tab[index] = loHead.untreeify(map);
                    else {
                        tab[index] = loHead;
                        if (hiHead != null) // (else is already treeified)
                            loHead.treeify(tab);
                    }
                }
                if (hiHead != null) {
                    if (hc <= UNTREEIFY_THRESHOLD)
                        tab[index + bit] = hiHead.untreeify(map);
                    else {
                        tab[index + bit] = hiHead;
                        if (loHead != null)
                            hiHead.treeify(tab);
                    }
                }
            }
    
            /* ------------------------------------------------------------ */
            // Red-black tree methods, all adapted from CLR
    
            static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,
                                                  TreeNode<K,V> p) {
                TreeNode<K,V> r, pp, rl;
                if (p != null && (r = p.right) != null) {
                    if ((rl = p.right = r.left) != null)
                        rl.parent = p;
                    if ((pp = r.parent = p.parent) == null)
                        (root = r).red = false;
                    else if (pp.left == p)
                        pp.left = r;
                    else
                        pp.right = r;
                    r.left = p;
                    p.parent = r;
                }
                return root;
            }
    
            static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,
                                                   TreeNode<K,V> p) {
                TreeNode<K,V> l, pp, lr;
                if (p != null && (l = p.left) != null) {
                    if ((lr = p.left = l.right) != null)
                        lr.parent = p;
                    if ((pp = l.parent = p.parent) == null)
                        (root = l).red = false;
                    else if (pp.right == p)
                        pp.right = l;
                    else
                        pp.left = l;
                    l.right = p;
                    p.parent = l;
                }
                return root;
            }
    
            static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
                                                        TreeNode<K,V> x) {
                x.red = true;
                for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
                    if ((xp = x.parent) == null) {
                        x.red = false;
                        return x;
                    }
                    else if (!xp.red || (xpp = xp.parent) == null)
                        return root;
                    if (xp == (xppl = xpp.left)) {
                        if ((xppr = xpp.right) != null && xppr.red) {
                            xppr.red = false;
                            xp.red = false;
                            xpp.red = true;
                            x = xpp;
                        }
                        else {
                            if (x == xp.right) {
                                root = rotateLeft(root, x = xp);
                                xpp = (xp = x.parent) == null ? null : xp.parent;
                            }
                            if (xp != null) {
                                xp.red = false;
                                if (xpp != null) {
                                    xpp.red = true;
                                    root = rotateRight(root, xpp);
                                }
                            }
                        }
                    }
                    else {
                        if (xppl != null && xppl.red) {
                            xppl.red = false;
                            xp.red = false;
                            xpp.red = true;
                            x = xpp;
                        }
                        else {
                            if (x == xp.left) {
                                root = rotateRight(root, x = xp);
                                xpp = (xp = x.parent) == null ? null : xp.parent;
                            }
                            if (xp != null) {
                                xp.red = false;
                                if (xpp != null) {
                                    xpp.red = true;
                                    root = rotateLeft(root, xpp);
                                }
                            }
                        }
                    }
                }
            }
    
            static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root,
                                                       TreeNode<K,V> x) {
                for (TreeNode<K,V> xp, xpl, xpr;;) {
                    if (x == null || x == root)
                        return root;
                    else if ((xp = x.parent) == null) {
                        x.red = false;
                        return x;
                    }
                    else if (x.red) {
                        x.red = false;
                        return root;
                    }
                    else if ((xpl = xp.left) == x) {
                        if ((xpr = xp.right) != null && xpr.red) {
                            xpr.red = false;
                            xp.red = true;
                            root = rotateLeft(root, xp);
                            xpr = (xp = x.parent) == null ? null : xp.right;
                        }
                        if (xpr == null)
                            x = xp;
                        else {
                            TreeNode<K,V> sl = xpr.left, sr = xpr.right;
                            if ((sr == null || !sr.red) &&
                                (sl == null || !sl.red)) {
                                xpr.red = true;
                                x = xp;
                            }
                            else {
                                if (sr == null || !sr.red) {
                                    if (sl != null)
                                        sl.red = false;
                                    xpr.red = true;
                                    root = rotateRight(root, xpr);
                                    xpr = (xp = x.parent) == null ?
                                        null : xp.right;
                                }
                                if (xpr != null) {
                                    xpr.red = (xp == null) ? false : xp.red;
                                    if ((sr = xpr.right) != null)
                                        sr.red = false;
                                }
                                if (xp != null) {
                                    xp.red = false;
                                    root = rotateLeft(root, xp);
                                }
                                x = root;
                            }
                        }
                    }
                    else { // symmetric
                        if (xpl != null && xpl.red) {
                            xpl.red = false;
                            xp.red = true;
                            root = rotateRight(root, xp);
                            xpl = (xp = x.parent) == null ? null : xp.left;
                        }
                        if (xpl == null)
                            x = xp;
                        else {
                            TreeNode<K,V> sl = xpl.left, sr = xpl.right;
                            if ((sl == null || !sl.red) &&
                                (sr == null || !sr.red)) {
                                xpl.red = true;
                                x = xp;
                            }
                            else {
                                if (sl == null || !sl.red) {
                                    if (sr != null)
                                        sr.red = false;
                                    xpl.red = true;
                                    root = rotateLeft(root, xpl);
                                    xpl = (xp = x.parent) == null ?
                                        null : xp.left;
                                }
                                if (xpl != null) {
                                    xpl.red = (xp == null) ? false : xp.red;
                                    if ((sl = xpl.left) != null)
                                        sl.red = false;
                                }
                                if (xp != null) {
                                    xp.red = false;
                                    root = rotateRight(root, xp);
                                }
                                x = root;
                            }
                        }
                    }
                }
            }
    
            /**
             * Recursive invariant check
             */
            static <K,V> boolean checkInvariants(TreeNode<K,V> t) {
                TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right,
                    tb = t.prev, tn = (TreeNode<K,V>)t.next;
                if (tb != null && tb.next != t)
                    return false;
                if (tn != null && tn.prev != t)
                    return false;
                if (tp != null && t != tp.left && t != tp.right)
                    return false;
                if (tl != null && (tl.parent != t || tl.hash > t.hash))
                    return false;
                if (tr != null && (tr.parent != t || tr.hash < t.hash))
                    return false;
                if (t.red && tl != null && tl.red && tr != null && tr.red)
                    return false;
                if (tl != null && !checkInvariants(tl))
                    return false;
                if (tr != null && !checkInvariants(tr))
                    return false;
                return true;
            }
        }
    
    }
    

    5. HashMap代码鉴赏

    由于HashMap的某些函数写得很优雅,设计令人眼前一亮,值得我们仔细品味,做些tricks积累。

    • static final int tableSizeFor(int cap)
      此函数主要用于帮助把初始化的HashMap容量修正为2的幂次方。比如我们传入12,实际容量被修正为16,传入1023修正为1024。
      此函数精妙之处是利用二进制的右移操作,O(1)时空复杂度。启示我们2的幂次操作都可考虑用二进制的操作来处理。
        static final int tableSizeFor(int cap) {
            int n = cap - 1;
            n |= n >>> 1;
            n |= n >>> 2;
            n |= n >>> 4;
            n |= n >>> 8;
            n |= n >>> 16;
            return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
        }
    

    为了简单考虑(不考虑cap <= 0),不妨设 n= cap -1 = 0...01xxxxxxxxxxx.[整型的二进制原码]
    n = 0...01xxxxxxxxxxx;
    n |= n>>>1; => n = 0...011xxxxxxxxxx; //相当于n的最1位往后移动1位,这样高位的前2位置一定为1
    n |= n>>>2; => n = 0...01111xxxxxxxx; //相当于n的高2位往后移动2位,这样高位的前4位置一定为1;
    n |= n>>>4; => n = 0...011111111xxxx; //相当于n的高4位往后移动4位,这样高位的前8位置一定为1;
    n |= n>>>8; => n = 0...0111111111111; //相当于n的高8位往后移动8位,这样高位的前16位置一定为1;
    n |= n>>>16; => n = 0...0111111111111; //相当于n的高16位往后移动16位,这样一定可以保证整型的31位置可以全置为1;
    总之,经过这一系列操作,一定可以使得自最高位1往后全是1,右移1 2 4 8 16是由于java的整型存储上32bit,(1位符号位+31为数字位),如果java的整型为64位的话,就会出现移动 1 2 4 8 16 32.
    下面解释为什么要使得 n = cap -1; 和 返回 n+1
    若不做 n = cap -1,直接 令 n = cap ; 在cap在不为2的幂次方时,完全正确,当cap 等于2的幂次方时,会出现返回比cap高一阶的cap,如我们给cap=8 返回16 ,给cap =16 返回 32.
    返回n+1的原因是:由上知,经过这一系列操作,一定可以使自最高位1往后全是1,即为 $2^0 + 2^1 + 2^2 + ... + 2^x $ ,加1后一定为2的幂次方了。

    6. HashMap关键技术分析

    哈希和索引

    哈希表设计的关键技术就是要减少哈希碰撞,故哈希函数的设计就至关重要,jdk通过hash函数和异或操作确定了元素在table中的索引位置。我们先来介绍jdk1.8.0_231中的hash函数的设计思路,以及浅谈为何要这样设计。

    • static final int hash(Object key)源码
        //通过hash先得到hash值
        static final int hash(Object key) {
            int h;
            return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16); 
        }
    
       // putVal函数的代码片段,通过 (n-1) & hash得到存放元素的索引位置 其等价于 hash % n,其中n表示哈希表的长度(table.length)
      if ((p = tab[i = (n - 1) & hash]) == null)
                tab[i] = newNode(hash, key, value, null);
    

    为什么要这样设计?为什么不直接返回key.hashCode()?
    考虑如下情况,当我们的哈希表的长度较小(n-1较小)时,但是我们hash值都比较大(表现在二进制源码上为低位相同,高位差距较大)
    如果我们直接返回这样的hash,很容易碰撞,因为真正与n-1做异或操作的都是hash值的低位,在低位相同情况下,出现碰撞,通过低16位与高16异或操作(>>>是高位补0,让低16位同时保存了低位和高位的bit信息,原来低位相同,高位相异的hash会碰撞,但取异或就会区别开,减少了碰撞的可能.

    • 可证,在n为2的幂次方时,必有 ((n - 1) & hash = hash & (n - 1) = hash % n),其中 (n in [16,1<<30])(hash in)[0,Integer.MAX_VALUE]
      如果hash < 0 ,这个等式是不成立的!(hash % (n-1)),当hash<0,java也将hash当正数出处理了,因为n最大值为1<<30,符号位永远为0,按位与,符号位结果一定还是0。
      (不妨令 n = 2^k, hash = x =sum_{i=0}^{m-1} mu_{i}2^i 其中mu_{i} in {0,1})
      (n-1 = 2^k -1 = sum_{i = 0}^{k-1} 2^i)

    ((n-1) & x) = ((sum_{i = 0}^{k-1}2^i)) & ((sum_{i=0}^{m-1}mu_{i}2^i)) (1)

    (k < m), ((1)式 = sum_{i=0}^{k-1}mu_{i}2^i)

    (m leq k), ((1)式 = sum_{i=0}^{m-1}mu_{i}2^i)

    (x mod n) = (x - [frac{x}{n}]* n) = ((sum_{i=0}^{m-1} mu_{i}2^i)) - (frac{sum_{i=0}^{m-1}mu_{i}2^i}{2^k} * 2^k) (2)
    (k < m),即为 x > n , ((2)式) =((sum_{i=0}^{m-1} mu_{i}2^i)) - (sum_{i = k}^{m-1} mu_{i} 2^i) = (sum_{i=0}^{k-1} mu_{i} 2^i)
    (m leq k), 即为 x < n, ((2)式) = (x = sum_{i=0}^{m-1}mu_{i}2^i)
    综上 ((n - 1) & hash = hash & (n - 1) = hash % n) (异或满足交换律不证)

    • 程序暴力证明
    public class Test {
        public static void main(String[] args) {
            int a,b,n,x;
            for (n = 16; n <= (1<<30); n<<=1){
                if(n < 0) break;
                x = 0;
                do{
                    a = (n - 1) & x;
                    if(n == 0) {
                        System.out.println("x = " + x);
                    }
                    b = x % n;
                    if(a != b){
                        System.out.println("出错了!"+ "x = " + x + " n = " + n);
                        System.out.println("a = " + a + " b = " + b);
                    }
                    x++;
                    if (x < 0 ) break;
                }while(x <= Integer.MAX_VALUE);
            }
        }
    }
    
    • 结果 : 无任何输出哦!运行比较慢哦,因为时间复杂度为:30 * Integer.MAX_VALUE,大概要算 21亿 * 30 约为 630亿次。

    数据结构

    前面一画出数据结构图形,可以看出,jdk1.8对HashMap做了部分优化,将原来的数组+链表中的长链表优化为红黑树。具体来讲,在jdk1.8.0_231源码(其他jdk8版本也是)中,当链表长度等于8是,就将其整体树化为红黑树。

    再来思考这样一个问题:当红黑树删除了大量节点,节点数少于8个时,会主动退化为树吗,还是继续保持树形?如5个节点时,是树还是链表?当退化为两个节点时(树,链表 都是线性的样子),这时又加入一个节点,是形成树,还是遵循此时小于8个节点,用链表解决冲突?【作为面试题不错,你不是说你读过源码吗?呵呵】

    冲突处理

    根据HashMap的数据结构,可以看出HashMap采用链地址法来解决冲突,如果节点hash相同,key不同,则利用链表或红黑树来存储hash冲突的节点。

    扩容机制

    jdk1.8的扩容机制,又时充满大量的tricks哦,叹服类库设计者的功力,给类库设计者跪了。996,赶工期,是不可能设计出如此巧妙,代码如此优雅的艺术品的。在分析jdk1.8.0_231版本之前,有必要分析以下jdk1.8前的源码

    • jdk1.8前的版本的扩容机制resize函数
     // 重新调整HashMap的大小,newCapacity是调整后的单位
        void resize(int newCapacity) {
            Entry[] oldTable = table;
            int oldCapacity = oldTable.length;
            if (oldCapacity == MAXIMUM_CAPACITY) {
                threshold = Integer.MAX_VALUE;
                return;
            }
    
            // 新建一个HashMap,将“旧HashMap”的全部元素添加到“新HashMap”中,
            // 然后,将“新HashMap”赋值给“旧HashMap”。
            Entry[] newTable = new Entry[newCapacity];
            transfer(newTable);
            table = newTable;
            threshold = (int)(newCapacity * loadFactor);
        }
    
        // 将老HashMap中的全部元素都迁移到新的tabl中去
        void transfer(Entry[] newTable) {
            Entry[] src = table; 
            int newCapacity = newTable.length;
            for (int j = 0; j < src.length; j++) {
                Entry<K,V> e = src[j];
                if (e != null) {
                    src[j] = null; 
                    do {
                        Entry<K,V> next = e.next; //得到下一个节点
                        int i = indexFor(e.hash, newCapacity); //根据hash,重新计算元素e在新容量下的索引i
                        // 利用头插入迁移,(原来的链表被翻转了,头节点变尾节点,尾节点变成头节点)
                        e.next = newTable[i];  
                        newTable[i] = e;
                        //e指针指向原链表的下一个节点
                        e = next;
                    } while (e != null);
                }
            }
        }
    

    综上,jdk8以前的扩容后新容量为老容量的2倍,将原HashMap中的table元素迁移到新的table中,重新计算原table每个元素在新table中的索引,且原链表反转连接在新的table后。总之,设计的很粗糙,一旦需要扩容,整体的数据+链表的迁移工作设计的很朴素直观,没啥技巧,工作量大。

    • jdk8扩容函数resize()源码分析
            Node<K,V>[] oldTab = table;
            int oldCap = (oldTab == null) ? 0 : oldTab.length;
            int oldThr = threshold;
            int newCap, newThr = 0;
            // 
            if (oldCap > 0) {
                //如果原容量大于等于设置的最大容量 1<<30
                if (oldCap >= MAXIMUM_CAPACITY) {
                    threshold = Integer.MAX_VALUE; //设置threshold = Integer.MAX_VALUE
                    return oldTab;
                }   
                else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&   // 新容量 = 2* 老容量
                         oldCap >= DEFAULT_INITIAL_CAPACITY)   // 
                    newThr = oldThr << 1; // double threshold
            }
            else if (oldThr > 0) // initial capacity was placed in threshold
                newCap = oldThr;
            //容量等于0,门限也等于0,容量初始化为16,扩容的thredshold设置为 16 * 3 / 4 = 12
            else {               // zero initial threshold signifies using defaults
                newCap = DEFAULT_INITIAL_CAPACITY; //16
                newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
            }
            if (newThr == 0) {
                float ft = (float)newCap * loadFactor;
                newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                          (int)ft : Integer.MAX_VALUE);
            }
            threshold = newThr;
            // 将原table迁移到新table
            @SuppressWarnings({"rawtypes","unchecked"})
            Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
            table = newTab;
            if (oldTab != null) {
                for (int j = 0; j < oldCap; ++j) {
                    Node<K,V> e;
                    if ((e = oldTab[j]) != null) {
                        oldTab[j] = null;
                        if (e.next == null)
                            newTab[e.hash & (newCap - 1)] = e;  //e在新table中的索引等于原table中的索引或e在新table中的索引是原table中的索引的2倍
                        else if (e instanceof TreeNode)   //如果e是TreeNode节点,树的迁移交给split
                            ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                        else { // preserve order//如果是链表,迁移后保持链表的顺序(jdk1.8前是逆序)
                            Node<K,V> loHead = null, loTail = null;
                            Node<K,V> hiHead = null, hiTail = null;
                            Node<K,V> next;
                            do {
                                next = e.next;
                                if ((e.hash & oldCap) == 0) { //说明e在新table中的的索引和原索引一致,下面给出定性分析
                                    if (loTail == null)
                                        loHead = e;
                                    else
                                        loTail.next = e;
                                    loTail = e;
                                }
                                else {   //说明e在新table中的索引=原索引+oldCap
                                    if (hiTail == null)
                                        hiHead = e;
                                    else
                                        hiTail.next = e;
                                    hiTail = e;
                                }
                            } while ((e = next) != null);
                            if (loTail != null) {
                                loTail.next = null;
                                newTab[j] = loHead;
                            }
                            if (hiTail != null) {
                                hiTail.next = null;
                                newTab[j + oldCap] = hiHead;
                            }
                        }
                    }
                }
            }
            return newTab;
        }
    

    对于新索引的计算解释:

    • 为什么新索引一定等于原索引 或 新索引 = 原索引 + oldCap?
      首先这一切的精巧设计都来源于 HashMap容量的设计一定为2的幂次方,表现在二进制源码上,即为有且仅有一位1bit位,其他所有位置为0,当capacity -1 时,高位1变0,其他所有低位变为1,正是这样一个原因,才会有新老索引之间的数值关系。我们首先给出一个直观上的例子,请读者体会hash与新老capactiy-1异或的操作,然后给出不严格的数学证明。
      例子:如e1.hash = 8(00001000), e2.hash = 17(00010001),oldCap = 16(00010000), newCap = 32(00100000).
      则 oldCap - 1 = (00001111); newCap -1 = (00011111);
      e1.hash & (oldCap - 1) = (00001000) & (00001111) = (00001000) = 8;
      e2.hash & (oldCap - 1) = (00010001) & (00001111) = (00000001) = 1;
      e1.hash & (newCap -1) = (00001000) = 8 = 原索引;
      e2.hash & (newCap -1) = (00010001) = 17 = 原索引 + oldCap = 1 + 16 = 17;
      不知道读者朋友没有发现 e.hash & oldCap 是否等于 0 可以判断出,在新索引 = 原索引 还是 新索引 = 原索引 + oldCap !
      e1.hash & oldCap = (00001000) & (00010000) = (000000000) = 0;
      e2.hash & oldCap = (00010001) & (00010000) = (000100000) = (00010000) = 16 = 原索引 + oldCap;
      因为oldCap的高位1 和 newCap - 1 的高位1 在同一位置,newCap -1 的最高位1之后全为1,而oldCap高位1之后全为0。如果e.hash & oldCap == 0,说明 e.hash & (newCap -1) 在newCap -1 最高1的比特位置一定为0。oldCap-1 和 newCap -1 除了 newCap -1 的最高位为1对应 oldCap - 1的0之外,剩下的低位二者完全相同,都为1,故,易得 在 e.hash & oldCap == 0时,必有,新索引 = 老索引。
      若,e.hash & oldCap != 0,说明 e.hash & (newCap -1) 在 newCap -1 最高1的比特位置一定为1。oldCap-1 和 newCap -1 除了 newCap -1 的最高位为1对应 oldCap - 1的0之外,剩下的低位二者完全相同,都为1,故,易得 在 e.hash & oldCap != 0时,新索引 = 原索引 + oldCap.上面的定性分析需要读者朋友在脑子中模拟比特的运算,不然看起来很懵哦。

    下面给出简单证明,不妨设:
    e.hash & (oldCap -1) = x,newCap = oldCap << 1
    证明:e.hash & (newCap - 1) = x or (x + OldCap)

    证明:
    不妨设 (e.hash = sum_{i = 0}^{m-1}mu_{i}2^i), 其中(mu_{i} in {0,1})
    (oldCap = 2^k => oldCap - 1 = 2^k -1 = sum_{i=0}^{k-1} 2^i)
    (newCap = 2^{k+1} => newCap -1 = 2^{k+1} -1 = sum_{i=0}^{k}2 ^i)
    e.hash & (oldCap -1) = (sum_{i = 0}^{m-1}mu_{i}2^i) & (sum_{i=0}^{k-1} 2^i) = x
    e.hash & (newCap -1) = (sum_{i = 0}^{m-1}mu_{i}2^i) & (sum_{i=0}^{k}2 ^i)
    = (sum_{i = 0}^{m-1}mu_{i}2^i) & ((sum_{i=0}^{k - 1}2 ^i + 2^k))(2)
    if m <= k , (2)式 = (sum_{i = 0}^{m-1}mu_{i}2^i) & ((sum_{i=0}^{k - 1}2 ^i)) = x
    if m > k, 在 (mu_{k} = 1) 时, (2)式 = (sum_{i = 0}^{m-1}mu_{i}2^i) & ((sum_{i=0}^{k - 1}2 ^i)) + (2^k) = x + oldCap ,
    (mu_{k} = 0) 时, (2)式 = (sum_{i = 0}^{m-1}mu_{i}2^i) & ((sum_{i=0}^{k - 1}2 ^i)) = x.
    综上,得证。

    根据上面的证明,我们可以总结出一下结论:
    当 m <= k 必有 (mu_{k} = 0) 新索引 = 原索引;
    当 m > k且(mu_{k} = 0)时,新索引 = 原索引;
    当 m > k 且 (mu_{k} = 1)时,新索引 = 原索引 + oldCap;
    故在代码考虑充分条件即可,即考虑 (mu_{k})是否等于0 ,体现在代码上就是e.hash & oldCap 是否等于0
    简简单单的一行代码是如此的漂亮呀。

    7. HashMap示例

    package collectionlearn;
    
    import java.util.*;
    
    public class HashMapTest {
        public static void main(String[] args) {
            HashMap<Integer,String> hashMap = new HashMap<>();
            hashMap.put(1,"hello");
            hashMap.put(2,"world");
            hashMap.put(3,"changgui");
            System.out.println(hashMap.put(4,"seu"));
            hashMap.put(3,"ahpu");
            System.out.println(hashMap.get(2));
            Set<Integer> keys = hashMap.keySet();
            System.out.println(keys);
            Collection<String> values = hashMap.values();
            System.out.println(values);
            Set<Map.Entry<Integer,String>> entrySet = hashMap.entrySet();
            for(Map.Entry<Integer,String> kv: entrySet){
                System.out.println(kv.getKey() + " " + kv.getValue());
            }
        }
    }
    
    

    8. 面试session

    • 谈谈你对HashMap的认识?
      (1) jdk1.8前,HashMap的数据结构为数组+链表,jdk1.8时,HashMap的数据结构是数组+链表+红黑树。具体来讲,当链表的长度大于8时,链表就会可能转成红黑树,因为在转成红黑树还会判断其容量是否小于64,若小于64,会先扩容,
      扩容后仍然碰撞,才会树化为红黑树;
      (2) HashMap的扩容机制,简单来讲,HashMap有三个和扩容相关的字段,capacity , threshold, loadfactor,当 size > threshold = capacity * loadfactor 时,才会扩容两倍;
      (3) HashMap时线程不安全的,或用其他并发多线程安全类或外部加锁或是Collections.synchronizedMap(new HashMap(...));

    • 谈谈哈希冲突的解决方案?
      开放定址法: 一旦发生了冲突,就去寻找下一个空的散列地址,只要散列表足够大,空的散列地址总能找到,并将记录存入
      链地址法: 将哈希表的每个单元作为链表的头结点,所有哈希地址为i的元素构成一个同义词链表。即发生冲突时就把该关键字链在以该单元为头结点的链表的尾部。
      再哈希法: 当哈希地址发生冲突用其他的函数计算另一个哈希函数地址,直到冲突不再产生为止。
      建立公共溢出区: 将哈希表分为基本表和溢出表两部分,发生冲突的元素都放入溢出表中。

  • 相关阅读:
    视图的INSERT、UPDATE、DELETE注意事项
    SQL SERVER 用户管理 TSQL 命令
    SQL SERVER 利用存储过程查看角色和用户信息
    犯错了~
    配置tomcat
    python中的类继承之super
    python中参数解析
    python的几个内联函数:lambda ,zip,filter, map, reduce
    第一次性能测试http_load
    不能在 DropDownList 中选择多个项
  • 原文地址:https://www.cnblogs.com/ahpucd/p/13326881.html
Copyright © 2011-2022 走看看