zoukankan      html  css  js  c++  java
  • ThreadLocal浅析(基于jdk1.8.0_231)

    ThreadLocal简介

    ThreadLocal 使用场景

    ThreadLocal示例

    ThreadLocal 源码浅析

    package java.lang;
    import java.lang.ref.*;
    import java.util.Objects;
    import java.util.concurrent.atomic.AtomicInteger;
    import java.util.function.Supplier;
    
    /**
     * This class provides thread-local variables.  These variables differ from their normal counterparts in that each thread that accesses one (via its {@code get} or {@code set} method) has its own, independently initialized copy of the variable.  
    
    
    {@code ThreadLocal} instances are typically private static fields in classes that wish to associate state with a thread (e.g.,a user ID or Transaction ID).
    
     * <p>For example, the class below generates unique identifiers local to each
     * thread.
     * A thread's id is assigned the first time it invokes {@code ThreadId.get()}
     * and remains unchanged on subsequent calls.
     * <pre>
     * import java.util.concurrent.atomic.AtomicInteger;
     *
     * public class ThreadId {
     *     // Atomic integer containing the next thread ID to be assigned
     *     private static final AtomicInteger nextId = new AtomicInteger(0);
     *
     *     // Thread local variable containing each thread's ID
     *     private static final ThreadLocal&lt;Integer&gt; threadId =
     *         new ThreadLocal&lt;Integer&gt;() {
     *             &#64;Override protected Integer initialValue() {
     *                 return nextId.getAndIncrement();
     *         }
     *     };
     *
     *     // Returns the current thread's unique ID, assigning it if necessary
     *     public static int get() {
     *         return threadId.get();
     *     }
     * }
     * </pre>
     * <p>Each thread holds an implicit reference to its copy of a thread-local
     * variable as long as the thread is alive and the {@code ThreadLocal}
     * instance is accessible; after a thread goes away, all of its copies of
     * thread-local instances are subject to garbage collection (unless other
     * references to these copies exist).
     *
     * @author  Josh Bloch and Doug Lea
     * @since   1.2
     */
    public class ThreadLocal<T> {
        /**
         * ThreadLocals rely on per-thread linear-probe hash maps attached
         * to each thread (Thread.threadLocals and
         * inheritableThreadLocals).  The ThreadLocal objects act as keys,
         * searched via threadLocalHashCode.  This is a custom hash code
         * (useful only within ThreadLocalMaps) that eliminates collisions
         * in the common case where consecutively constructed ThreadLocals
         * are used by the same threads, while remaining well-behaved in
         * less common cases.
         */
        private final int threadLocalHashCode = nextHashCode();
    
        /**
         * The next hash code to be given out. Updated atomically. Starts at
         * zero.
         */
        private static AtomicInteger nextHashCode =
            new AtomicInteger();
    
        /**
         * The difference between successively generated hash codes - turns
         * implicit sequential thread-local IDs into near-optimally spread
         * multiplicative hash values for power-of-two-sized tables.
         */
        private static final int HASH_INCREMENT = 0x61c88647;
    
        /**
         * Returns the next hash code.
         */
        private static int nextHashCode() {
            return nextHashCode.getAndAdd(HASH_INCREMENT);
        }
    
        /**
         * Returns the current thread's "initial value" for this
         * thread-local variable.  This method will be invoked the first
         * time a thread accesses the variable with the {@link #get}
         * method, unless the thread previously invoked the {@link #set}
         * method, in which case the {@code initialValue} method will not
         * be invoked for the thread.  Normally, this method is invoked at
         * most once per thread, but it may be invoked again in case of
         * subsequent invocations of {@link #remove} followed by {@link #get}.
         *
         * <p>This implementation simply returns {@code null}; if the
         * programmer desires thread-local variables to have an initial
         * value other than {@code null}, {@code ThreadLocal} must be
         * subclassed, and this method overridden.  Typically, an
         * anonymous inner class will be used.
         *
         * @return the initial value for this thread-local
         */
        protected T initialValue() {
            return null;
        }
    
        /**
         * Creates a thread local variable. The initial value of the variable is
         * determined by invoking the {@code get} method on the {@code Supplier}.
         *
         * @param <S> the type of the thread local's value
         * @param supplier the supplier to be used to determine the initial value
         * @return a new thread local variable
         * @throws NullPointerException if the specified supplier is null
         * @since 1.8
         */
        public static <S> ThreadLocal<S> withInitial(Supplier<? extends S> supplier) {
            return new SuppliedThreadLocal<>(supplier);
        }
    
        /**
         * Creates a thread local variable.
         * @see #withInitial(java.util.function.Supplier)
         */
        public ThreadLocal() {
        }
    
        /**
         * Returns the value in the current thread's copy of this
         * thread-local variable.  If the variable has no value for the
         * current thread, it is first initialized to the value returned
         * by an invocation of the {@link #initialValue} method.
         *
         * @return the current thread's value of this thread-local
         */
        public T get() {
            Thread t = Thread.currentThread();
            ThreadLocalMap map = getMap(t);
            if (map != null) {
                ThreadLocalMap.Entry e = map.getEntry(this);
                if (e != null) {
                    @SuppressWarnings("unchecked")
                    T result = (T)e.value;
                    return result;
                }
            }
            return setInitialValue();
        }
    
        /**
         * Variant of set() to establish initialValue. Used instead
         * of set() in case user has overridden the set() method.
         *
         * @return the initial value
         */
        private T setInitialValue() {
            T value = initialValue();
            Thread t = Thread.currentThread();
            ThreadLocalMap map = getMap(t);
            if (map != null)
                map.set(this, value);
            else
                createMap(t, value);
            return value;
        }
    
        /**
         * Sets the current thread's copy of this thread-local variable
         * to the specified value.  Most subclasses will have no need to
         * override this method, relying solely on the {@link #initialValue}
         * method to set the values of thread-locals.
         *
         * @param value the value to be stored in the current thread's copy of
         *        this thread-local.
         */
        public void set(T value) {
            Thread t = Thread.currentThread();
            ThreadLocalMap map = getMap(t);
            if (map != null)
                map.set(this, value);
            else
                createMap(t, value);
        }
    
        /**
         * Removes the current thread's value for this thread-local
         * variable.  If this thread-local variable is subsequently
         * {@linkplain #get read} by the current thread, its value will be
         * reinitialized by invoking its {@link #initialValue} method,
         * unless its value is {@linkplain #set set} by the current thread
         * in the interim.  This may result in multiple invocations of the
         * {@code initialValue} method in the current thread.
         *
         * @since 1.5
         */
         public void remove() {
             ThreadLocalMap m = getMap(Thread.currentThread());
             if (m != null)
                 m.remove(this);
         }
    
        /**
         * Get the map associated with a ThreadLocal. Overridden in
         * InheritableThreadLocal.
         *
         * @param  t the current thread
         * @return the map
         */
        ThreadLocalMap getMap(Thread t) {
            return t.threadLocals;
        }
    
        /**
         * Create the map associated with a ThreadLocal. Overridden in
         * InheritableThreadLocal.
         *
         * @param t the current thread
         * @param firstValue value for the initial entry of the map
         */
        void createMap(Thread t, T firstValue) {
            t.threadLocals = new ThreadLocalMap(this, firstValue);
        }
    
        /**
         * Factory method to create map of inherited thread locals.
         * Designed to be called only from Thread constructor.
         *
         * @param  parentMap the map associated with parent thread
         * @return a map containing the parent's inheritable bindings
         */
        static ThreadLocalMap createInheritedMap(ThreadLocalMap parentMap) {
            return new ThreadLocalMap(parentMap);
        }
    
        /**
         * Method childValue is visibly defined in subclass
         * InheritableThreadLocal, but is internally defined here for the
         * sake of providing createInheritedMap factory method without
         * needing to subclass the map class in InheritableThreadLocal.
         * This technique is preferable to the alternative of embedding
         * instanceof tests in methods.
         */
        T childValue(T parentValue) {
            throw new UnsupportedOperationException();
        }
    
        /**
         * An extension of ThreadLocal that obtains its initial value from
         * the specified {@code Supplier}.
         */
        static final class SuppliedThreadLocal<T> extends ThreadLocal<T> {
    
            private final Supplier<? extends T> supplier;
    
            SuppliedThreadLocal(Supplier<? extends T> supplier) {
                this.supplier = Objects.requireNonNull(supplier);
            }
    
            @Override
            protected T initialValue() {
                return supplier.get();
            }
        }
    
    
        
       // ThreadcalMap 本质上是一个哈希表,但是他并没有利用 HashMap,它处理冲突的节点时,利用 再哈希的方法,故该哈希表的数据结构就是一个数组。
       // 
        static class ThreadLocalMap {
    
            /**
             * The entries in this hash map extend WeakReference, using
             * its main ref field as the key (which is always a
             * ThreadLocal object).  Note that null keys (i.e. entry.get()
             * == null) mean that the key is no longer referenced, so the
             * entry can be expunged from table.  Such entries are referred to
             * as "stale entries" in the code that follows.
             */
            static class Entry extends WeakReference<ThreadLocal<?>> {
                /** The value associated with this ThreadLocal. */
                Object value;
                Entry(ThreadLocal<?> k, Object v) {
                    super(k);
                    value = v;
                }
            }
            // 初始化容量,后续容量都必须为2的幂次方
            private static final int INITIAL_CAPACITY = 16;
            // 哈希数组
            private Entry[] table;
            //table中实际元素
            private int size = 0;
            // threshold = capacity * loadfoactor
            private int threshold; // Default to 0
    
            /**
             * Set the resize threshold to maintain at worst a 2/3 load factor.
             */
            // 调整threshold 以维持最坏的2/3负载系数
            private void setThreshold(int len) {
                threshold = len * 2 / 3;
            }
            //如果 计算出的索引已有元素(key 不同),则往后移动一位存储(再哈希的一种思想,比较简单的处理冲突的方法)
            private static int nextIndex(int i, int len) {  
                return ((i + 1 < len) ? i + 1 : 0);
            }
            private static int prevIndex(int i, int len) {
                return ((i - 1 >= 0) ? i - 1 : len - 1);
            }
    
            /**
             * Construct a new map initially containing (firstKey, firstValue).
             * ThreadLocalMaps are constructed lazily, so we only create
             * one when we have at least one entry to put in it.
             */
            ThreadLocalMap(ThreadLocal<?> firstKey, Object firstValue) {
                table = new Entry[INITIAL_CAPACITY];     //初始化哈希表
                int i = firstKey.threadLocalHashCode & (INITIAL_CAPACITY - 1);  //计算元素存储的索引
                table[i] = new Entry(firstKey, firstValue); 
                size = 1;
                setThreshold(INITIAL_CAPACITY);
            }
    
            // 
            private ThreadLocalMap(ThreadLocalMap parentMap) {
                Entry[] parentTable = parentMap.table; 
                int len = parentTable.length;
                setThreshold(len);
                table = new Entry[len];
    
                for (int j = 0; j < len; j++) {
                    Entry e = parentTable[j];
                    if (e != null) {
                        @SuppressWarnings("unchecked")
                        ThreadLocal<Object> key = (ThreadLocal<Object>) e.get();
                        if (key != null) {
                            Object value = key.childValue(e.value);
                            Entry c = new Entry(key, value);
                            int h = key.threadLocalHashCode & (len - 1);
                            while (table[h] != null)
                                h = nextIndex(h, len);
                            table[h] = c;
                            size++;
                        }
                    }
                }
            }
    
            /**
             * Get the entry associated with key.  This method
             * itself handles only the fast path: a direct hit of existing
             * key. It otherwise relays to getEntryAfterMiss.  This is
             * designed to maximize performance for direct hits, in part
             * by making this method readily inlinable.
             *
             * @param  key the thread local object
             * @return the entry associated with key, or null if no such
             */
             // 根据key得到value
            private Entry getEntry(ThreadLocal<?> key) {
                int i = key.threadLocalHashCode & (table.length - 1);
                Entry e = table[i];
                if (e != null && e.get() == key)
                    return e;
                else
                    return getEntryAfterMiss(key, i, e);
            }
    
            /**
             * Version of getEntry method for use when key is not found in its direct hash slot.
             *
             * @param  key the thread local object
             * @param  i the table index for key's hash code
             * @param  e the entry at table[i]
             * @return the entry associated with key, or null if no such
             */
            // 
            private Entry getEntryAfterMiss(ThreadLocal<?> key, int i, Entry e) {
                Entry[] tab = table;
                int len = tab.length;
    
                while (e != null) {
                    ThreadLocal<?> k = e.get();
                    if (k == key)
                        return e;
                    if (k == null)
                        expungeStaleEntry(i);
                    else
                        i = nextIndex(i, len);
                    e = tab[i];
                }
                return null;
            }
            // 
            private void set(ThreadLocal<?> key, Object value) {
    
                // We don't use a fast path as with get() because it is at
                // least as common to use set() to create new entries as
                // it is to replace existing ones, in which case, a fast
                // path would fail more often than not.
    
                Entry[] tab = table;
                int len = tab.length;
                int i = key.threadLocalHashCode & (len-1);  //得到索引
                // 如果 处理冲突
                for (Entry e = tab[i];
                     e != null;
                     e = tab[i = nextIndex(i, len)]) {   //e = tab[i = nextIndex(i, len)] 是再哈希
                    ThreadLocal<?> k = e.get();
    
                    if (k == key) {     //如果 key 相等,新value 换 老value
                        e.value = value;
                        return;
                    }
    
                    if (k == null) {     
                        replaceStaleEntry(key, value, i);
                        return;
                    }
                }
    
                tab[i] = new Entry(key, value);
                int sz = ++size;
                if (!cleanSomeSlots(i, sz) && sz >= threshold)
                    rehash();
            }
    
            /**
             * Remove the entry for key.
             */
            private void remove(ThreadLocal<?> key) {
                Entry[] tab = table;
                int len = tab.length;
                int i = key.threadLocalHashCode & (len-1);
                for (Entry e = tab[i];
                     e != null;
                     e = tab[i = nextIndex(i, len)]) {
                    if (e.get() == key) {
                        e.clear();
                        expungeStaleEntry(i);
                        return;
                    }
                }
            }
    
            /**
             * Replace a stale entry encountered during a set operation
             * with an entry for the specified key.  The value passed in
             * the value parameter is stored in the entry, whether or not
             * an entry already exists for the specified key.
             *
             * As a side effect, this method expunges all stale entries in the
             * "run" containing the stale entry.  (A run is a sequence of entries
             * between two null slots.)
             *
             * @param  key the key
             * @param  value the value to be associated with key
             * @param  staleSlot index of the first stale entry encountered while
             *         searching for key.
             */
            // 
            private void replaceStaleEntry(ThreadLocal<?> key, Object value,
                                           int staleSlot) {
                Entry[] tab = table;
                int len = tab.length;
                Entry e;
    
                // Back up to check for prior stale entry in current run.
                // We clean out whole runs at a time to avoid continual
                // incremental rehashing due to garbage collector freeing
                // up refs in bunches (i.e., whenever the collector runs).
                int slotToExpunge = staleSlot;
                for (int i = prevIndex(staleSlot, len);
                     (e = tab[i]) != null;
                     i = prevIndex(i, len))
                    if (e.get() == null)
                        slotToExpunge = i;
    
                // Find either the key or trailing null slot of run, whichever
                // occurs first
                for (int i = nextIndex(staleSlot, len);
                     (e = tab[i]) != null;
                     i = nextIndex(i, len)) {
                    ThreadLocal<?> k = e.get();
    
                    // If we find key, then we need to swap it
                    // with the stale entry to maintain hash table order.
                    // The newly stale slot, or any other stale slot
                    // encountered above it, can then be sent to expungeStaleEntry
                    // to remove or rehash all of the other entries in run.
                    if (k == key) {
                        e.value = value;
    
                        tab[i] = tab[staleSlot];
                        tab[staleSlot] = e;
    
                        // Start expunge at preceding stale entry if it exists
                        if (slotToExpunge == staleSlot)
                            slotToExpunge = i;
                        cleanSomeSlots(expungeStaleEntry(slotToExpunge), len);
                        return;
                    }
    
                    // If we didn't find stale entry on backward scan, the
                    // first stale entry seen while scanning for key is the
                    // first still present in the run.
                    if (k == null && slotToExpunge == staleSlot)
                        slotToExpunge = i;
                }
    
                // If key not found, put new entry in stale slot
                tab[staleSlot].value = null;
                tab[staleSlot] = new Entry(key, value);
    
                // If there are any other stale entries in run, expunge them
                if (slotToExpunge != staleSlot)
                    cleanSomeSlots(expungeStaleEntry(slotToExpunge), len);
            }
    
            /**
             * Expunge a stale entry by rehashing any possibly colliding entries
             * lying between staleSlot and the next null slot.  This also expunges
             * any other stale entries encountered before the trailing null.  See
             * Knuth, Section 6.4
             *
             * @param staleSlot index of slot known to have null key
             * @return the index of the next null slot after staleSlot
             * (all between staleSlot and this slot will have been checked
             * for expunging).
             */
            private int expungeStaleEntry(int staleSlot) {
                Entry[] tab = table;
                int len = tab.length;
    
                // expunge entry at staleSlot
                tab[staleSlot].value = null;
                tab[staleSlot] = null;
                size--;
    
                // Rehash until we encounter null
                Entry e;
                int i;
                for (i = nextIndex(staleSlot, len);
                     (e = tab[i]) != null;
                     i = nextIndex(i, len)) {
                    ThreadLocal<?> k = e.get();
                    if (k == null) {
                        e.value = null;
                        tab[i] = null;
                        size--;
                    } else {
                        int h = k.threadLocalHashCode & (len - 1);
                        if (h != i) {
                            tab[i] = null;
    
                            // Unlike Knuth 6.4 Algorithm R, we must scan until
                            // null because multiple entries could have been stale.
                            while (tab[h] != null)
                                h = nextIndex(h, len);
                            tab[h] = e;
                        }
                    }
                }
                return i;
            }
    
            /**
             * Heuristically scan some cells looking for stale entries.
             * This is invoked when either a new element is added, or
             * another stale one has been expunged. It performs a
             * logarithmic number of scans, as a balance between no
             * scanning (fast but retains garbage) and a number of scans
             * proportional to number of elements, that would find all
             * garbage but would cause some insertions to take O(n) time.
             *
             * @param i a position known NOT to hold a stale entry. The
             * scan starts at the element after i.
             *
             * @param n scan control: {@code log2(n)} cells are scanned,
             * unless a stale entry is found, in which case
             * {@code log2(table.length)-1} additional cells are scanned.
             * When called from insertions, this parameter is the number
             * of elements, but when from replaceStaleEntry, it is the
             * table length. (Note: all this could be changed to be either
             * more or less aggressive by weighting n instead of just
             * using straight log n. But this version is simple, fast, and
             * seems to work well.)
             *
             * @return true if any stale entries have been removed.
             */
             // 
            private boolean cleanSomeSlots(int i, int n) {
                boolean removed = false;
                Entry[] tab = table;
                int len = tab.length;
                do {
                    i = nextIndex(i, len);
                    Entry e = tab[i];
                    if (e != null && e.get() == null) {
                        n = len;
                        removed = true;
                        i = expungeStaleEntry(i);
                    }
                } while ( (n >>>= 1) != 0);
                return removed;
            }
    
            /**
             * Re-pack and/or re-size the table. First scan the entire
             * table removing stale entries. If this doesn't sufficiently
             * shrink the size of the table, double the table size.
             */
            // 重新包装 调整table大小。首先扫描整个删除陈旧条目的table。如果缩小后的table大小,将表的大小增加一倍。
            private void rehash() {
                expungeStaleEntries();
                // Use lower threshold for doubling to avoid hysteresis
                if (size >= threshold - threshold / 4)
                    resize();
            }
    
            //扩容,table.length = 2 * table.length
            private void resize() {
                Entry[] oldTab = table;
                int oldLen = oldTab.length;
                int newLen = oldLen * 2;
                Entry[] newTab = new Entry[newLen];
                int count = 0;
                // 将old table中的元素迁移到new table中
                for (int j = 0; j < oldLen; ++j) {
                    Entry e = oldTab[j];
                    if (e != null) {
                        ThreadLocal<?> k = e.get();
                        if (k == null) {
                            e.value = null; // Help the GC
                        } else {
                            int h = k.threadLocalHashCode & (newLen - 1);
                            while (newTab[h] != null)  // 冲突时,往后一位看能不能存,不能存时一直移动存下为止
                                h = nextIndex(h, newLen); 
                            newTab[h] = e;
                            count++;
                        }
                    }
                }
                setThreshold(newLen);
                size = count;
                table = newTab;
            }
            // 清除table中所有的过时的entries
            private void expungeStaleEntries() {
                Entry[] tab = table;
                int len = tab.length;
                for (int j = 0; j < len; j++) {
                    Entry e = tab[j];
                    if (e != null && e.get() == null)
                        expungeStaleEntry(j);
                }
            }
        }
    }
    

    ThreadLocal API

    面试session

  • 相关阅读:
    《Cracking the Coding Interview》——第6章:智力题——题目2
    《Cracking the Coding Interview》——第6章:智力题——题目1
    《Cracking the Coding Interview》——第5章:位操作——题目8
    《Cracking the Coding Interview》——第5章:位操作——题目7
    《Cracking the Coding Interview》——第5章:位操作——题目6
    Spyder 调出绘图界面
    作为非计算机专业的学生,觉得 C 语言远比其他语言易于上手,正常吗?
    vs2015 + Python3.5 环境搭建
    更新32位Spyder从3.0.0-> 3.2.3
    luogu P1047 校门外的树 x
  • 原文地址:https://www.cnblogs.com/ahpucd/p/13490444.html
Copyright © 2011-2022 走看看