Spark高可用集群搭建
- 在所有节点上下载或上传spark文件,解压缩安装,建立软连接
- 配置所有节点spark安装目录下的spark-evn.sh文件
- 配置slaves
- 配置spark-default.conf
- 配置所有节点的环境变量
spark-evn.sh
[root@node01 conf]# mv spark-env.sh.template spark-env.sh [root@node01 conf]# vi spark-env.sh加入
export JAVA_HOME=/usr/local/jdk #export SCALA_HOME=/software/scala-2.11.8 export HADOOP_HOME=/usr/local/hadoop export HADOOP_CONF_DIR=/usr/local/hadoop/etc/hadoop #Spark历史服务分配的内存尺寸 #export SPARK_DAEMON_MEMORY=512m #下面的这一项就是Spark的高可用配置,如果是配置master的高可用,master就必须有;如果是slave的高可用,slave就必须有;但是建议都配置。 export SPARK_DAEMON_JAVA_OPTS="-Dspark.deploy.recoveryMode=ZOOKEEPER -Dspark.deploy.zookeeper.url=node01:2181,node02:2181,node03:2181 -Dspark.deploy.zookeeper.dir=/spark" #当启用了Spark的高可用之后,下面的这一项应该被注释掉(即不能再被启用,后面通过提交应用时使用--master参数指定高可用集群节点) #export SPARK_MASTER_IP=master01 #export SPARK_WORKER_MEMORY=1500m #export SPARK_EXECUTOR_MEMORY=100m-Dspark.deploy.recoveryMode=ZOOKEEPER #说明整个集群状态是通过zookeeper来维护的,整个集群状态的恢复也是通过zookeeper来维护的。就是说用zookeeper做了spark的HA配置,Master(Active)挂掉的话,Master(standby)要想变成Master(Active)的话,Master(Standby)就要像zookeeper读取整个集群状态信息,然后进行恢复所有Worker和Driver的状态信息,和所有的Application状态信息;
-Dspark.deploy.zookeeper.url=potter2:2181,potter3:2181,potter4:2181,potter5:2181#将所有配置了zookeeper,并且在这台机器上有可能做master(Active)的机器都配置进来;(我用了4台,就配置了4台)
-Dspark.deploy.zookeeper.dir=/spark
-Dspark.deploy.zookeeper.dir是保存spark的元数据,保存了spark的作业运行状态;
zookeeper会保存spark集群的所有的状态信息,包括所有的Workers信息,所有的Applactions信息,所有的Driver信息,如果集群slaves
[root@node03 conf]# mv slaves.template slaves [root@node03 conf]# vi slaves将localhost删掉,三个节点都加进去
node01 node02 node03
配置环境变量
vi /etc/profile
添加
export SPARK_HOME=/usr/local/spark export PATH=$PATH:$SPARK_HOME/bin
source /etc/profile
配置spark-default.conf
spark默认本地模式
修改下面一项:
spark.master spark://node01:7077,node02:7077,node03:7077以上工作是在所有节点都要进行的
启动
zookeeper启动
hadoop启动
在一个节点上
/usr/local/spark/sbin/start-all.sh
在另外两个节点上单独启动master,实现高可用
/usr/local/spark/sbin/start-master.sh
spark-shell命令可以启动shell
web界面
node01:8080
node02:8080
node03:8080
node03是active的,其他standby
本次实验要求
- JDK安装配置:1.8以上版本
- Scala安装配置:Scala 2.11
- Intellij IDEA:下载最新版本
参考链接:
Spark 开发环境|Spark开发指南 https://taoistwar.gitbooks.io/spark-developer-guide/spark_base/spark_dev_environment.html
IDEA中使用Maven开发Spark应用程序 https://blog.csdn.net/yu0_zhang0/article/details/80112846
使用IntelliJ IDEA配置Spark应用开发环境及源码阅读环境 https://blog.tomgou.xyz/shi-yong-intellij-ideapei-zhi-sparkying-yong-kai-fa-huan-jing-ji-yuan-ma-yue-du-huan-jing.html
IDEA导入一个已有的项目:
欢迎界面有Import Project,如果在项目中使用下面步骤,
1.File----->Close Project.
2.在欢迎界面点击Import Project.
Spark-shell的使用
本地运行,bin目录下
./spark-shell
一、企业开发Spark作业方式
1.Spark开发测试
- IDEA通过Spark Local模式开发(不能远程提交到集群)
- Spark Shell交互式分析(可以远程连接集群)
2.Spark生产环境运行
- 打成assembly jar
- 使用bin/spark-submit.sh提交
二、通过已有项目搭建Spark开发环境
1.配置JDK,Scala,IDEA
1)下载JDK
https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
选择自己需要的版本下载
2)下载Scala
https://www.scala-lang.org/download/2.11.12.html
选择自己需要的版本下载
3)下载IDEA
IDEA选择最新版本下载即可
4)安装IDEA插件
IDEA搜索安装Scala插件、Maven Integration插件
File--->Settings--->搜索框输入Plugins搜索
2.在工程模板基础上修改
打开已经创建好的工程模板,在IDEA中直接创建见下一小节(三、通过IDEA直接创建)。
更新相应的pom.xml依赖 设置自动导入Maven依赖 https://blog.csdn.net/Gnd15732625435/article/details/81062381
开发
三、通过IDEA直接创建
1.DEA创建一个新的maven项目
File--->New--->Project--->Maven
2.填充和修改依赖
pom.xml
<?xml version="1.0" encoding="UTF-8"?> <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd"> <modelVersion>4.0.0</modelVersion> <groupId>com.jiehui</groupId> <artifactId>sparktest</artifactId> <version>1.0-SNAPSHOT</version> <properties> <spark.version>2.4.0</spark.version> <fastjson.version>1.2.14</fastjson.version> <scala.version>2.11.8</scala.version> <java.version>1.8</java.version> </properties> <repositories> <repository> <id>nexus-aliyun</id> <name>Nexus aliyun</name> <url>http://maven.aliyun.com/nexus/content/groups/public</url> </repository> </repositories> <dependencies> <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-sql_2.11</artifactId> <version>${spark.version}</version> </dependency> <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-streaming_2.11</artifactId> <version>${spark.version}</version> </dependency> <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-streaming-kafka-0-8_2.11</artifactId> <version>${spark.version}</version> </dependency> <dependency> <groupId>mysql</groupId> <artifactId>mysql-connector-java</artifactId> <version>5.1.38</version> </dependency> <dependency> <groupId>commons-dbcp</groupId> <artifactId>commons-dbcp</artifactId> <version>1.4</version> </dependency> <dependency> <groupId>junit</groupId> <artifactId>junit</artifactId> <version>3.8.1</version> <scope>test</scope> </dependency> <dependency> <groupId>com.alibaba</groupId> <artifactId>fastjson</artifactId> <version>${fastjson.version}</version> </dependency> <dependency> <groupId>org.scala-lang</groupId> <artifactId>scala-compiler</artifactId> <version>${scala.version}</version> </dependency> <dependency> <groupId>org.scala-lang</groupId> <artifactId>scala-reflect</artifactId> <version>${scala.version}</version> </dependency> <dependency> <groupId>org.scala-lang</groupId> <artifactId>scala-library</artifactId> <version>${scala.version}</version> </dependency> <dependency> <groupId>org.scala-lang</groupId> <artifactId>scala-actors</artifactId> <version>${scala.version}</version> </dependency> <dependency> <groupId>org.scala-lang</groupId> <artifactId>scalap</artifactId> <version>${scala.version}</version> </dependency> </dependencies> <build> <plugins> <plugin> <artifactId>maven-assembly-plugin</artifactId> <version>2.3</version> <configuration> <classifier>dist</classifier> <appendAssemblyId>true</appendAssemblyId> <descriptorRefs> <descriptor>jar-with-dependencies</descriptor> </descriptorRefs> </configuration> <executions> <execution> <id>make-assembly</id> <phase>package</phase> <goals> <goal>single</goal> </goals> </execution> </executions> </plugin> <plugin> <artifactId>maven-compiler-plugin</artifactId> <configuration> <source>1.7</source> <target>1.7</target> </configuration> </plugin> <plugin> <groupId>net.alchim31.maven</groupId> <artifactId>scala-maven-plugin</artifactId> <version>3.2.2</version> <executions> <execution> <id>scala-compile-first</id> <phase>process-resources</phase> <goals> <goal>compile</goal> </goals> </execution> </executions> <configuration> <scalaVersion>${scala.version}</scalaVersion> <recompileMode>incremental</recompileMode> <useZincServer>true</useZincServer> <args> <arg>-unchecked</arg> <arg>-deprecation</arg> <arg>-feature</arg> </args> <jvmArgs> <jvmArg>-Xms1024m</jvmArg> <jvmArg>-Xmx1024m</jvmArg> </jvmArgs> <javacArgs> <javacArg>-source</javacArg> <javacArg>${java.version}</javacArg> <javacArg>-target</javacArg> <javacArg>${java.version}</javacArg> <javacArg>-Xlint:all,-serial,-path</javacArg> </javacArgs> </configuration> </plugin> </plugins> </build> </project>
注意scala版本,maven中的版本要和IDEA中设置的版本相一致,如果不一致,编译会报错
比如,maven中设置了2.11.8
IDEA中File--->Project Structure--->Libraries,点+按钮,出现如下的Scala版本,系统安装的是2.12.8,但我们应选择最下面的2.11.8
3.编写spark程序
在src目录下创建scala文件夹,创建com.jiehui.test包
编写Spark测试程序
package com.jiehui.test import org.apache.spark._
object SparkTest {
def main(args: Array[String]): Unit = {
val master = if (args.length > 0) args(0).toString else "local"
val conf = new SparkConf().setMaster(master).setAppName("test")
val sc = new SparkContext(conf)
val rdd = sc.parallelize(Seq(1,2,3)).foreach(println(_))
}
}
4.运行
四、作业提交
1.集群配置
因为使用Yarn,因此需要安装好Hadoop,Hadoop需要安装zookeeper,由于工程使用Maven构建,还需要安装Maven。
本实验相关配置:
Zookeeper:3.4.10
Hadoop:2.8.4
Maven:3.6.1
Yarn和Maven的环境变量已经配置好
下载spark二进制包 http://spark.apache.org/downloads.html
选择相应版本,点击3进入下载地址
复制镜像链接,在服务器中下载并解压
[root@node01 bigdata]# wget http://mirror.bit.edu.cn/apache/spark/spark-2.2.0/spark-2.2.0-bin-hadoop2.7.tgz
[root@node01 bigdata]# tar -zxvf spark-2.2.0-bin-hadoop2.7.tgz
2.作业上传并打包
文件比较小可以直接上传到服务器,文件大打包一下
进入项目目录,用maven打包
[root@node01 project]# cd sparktest/
[root@node01 sparktest]#mvn package
打包好后,target目录下有打好的jar包
[root@node01 sparktest]# ll target 总用量 136852 drwxr-xr-x. 2 root root 4096 9月 3 14:38 archive-tmp drwxr-xr-x. 3 root root 4096 9月 3 14:31 classes drwxr-xr-x. 3 root root 4096 9月 3 14:31 generated-sources drwxr-xr-x. 2 root root 4096 9月 3 14:37 maven-archiver drwxr-xr-x. 3 root root 4096 9月 3 14:37 maven-status -rw-r--r--. 1 root root 6023 9月 3 14:37 sparktest-1.0-SNAPSHOT.jar -rw-r--r--. 1 root root 140099592 9月 3 14:39 sparktest-1.0-SNAPSHOT-jar-with-dependencies.jar
3.执行作业
进入spark的bin目录
[root@node01 bigdata]# cd spark-2.2.0-bin-hadoop2.7 [root@node01 spark-2.2.0-bin-hadoop2.7]# cd bin [root@node01 bin]# ll 总用量 100 -rwxr-xr-x. 1 hadoop hadoop 1089 7月 1 2017 beeline -rw-r--r--. 1 hadoop hadoop 899 7月 1 2017 beeline.cmd -rw-r--r--. 1 root root 734 6月 11 00:39 derby.log -rwxr-xr-x. 1 hadoop hadoop 1933 7月 1 2017 find-spark-home -rw-r--r--. 1 hadoop hadoop 1909 7月 1 2017 load-spark-env.cmd -rw-r--r--. 1 hadoop hadoop 2133 7月 1 2017 load-spark-env.sh drwxr-xr-x. 5 root root 4096 6月 11 00:39 metastore_db -rwxr-xr-x. 1 hadoop hadoop 2989 7月 1 2017 pyspark -rw-r--r--. 1 hadoop hadoop 1493 7月 1 2017 pyspark2.cmd -rw-r--r--. 1 hadoop hadoop 1002 7月 1 2017 pyspark.cmd -rwxr-xr-x. 1 hadoop hadoop 1030 7月 1 2017 run-example -rw-r--r--. 1 hadoop hadoop 988 7月 1 2017 run-example.cmd -rwxr-xr-x. 1 hadoop hadoop 3196 7月 1 2017 spark-class -rw-r--r--. 1 hadoop hadoop 2467 7月 1 2017 spark-class2.cmd -rw-r--r--. 1 hadoop hadoop 1012 7月 1 2017 spark-class.cmd -rwxr-xr-x. 1 hadoop hadoop 1039 7月 1 2017 sparkR -rw-r--r--. 1 hadoop hadoop 1014 7月 1 2017 sparkR2.cmd -rw-r--r--. 1 hadoop hadoop 1000 7月 1 2017 sparkR.cmd -rwxr-xr-x. 1 hadoop hadoop 3017 7月 1 2017 spark-shell -rw-r--r--. 1 hadoop hadoop 1530 7月 1 2017 spark-shell2.cmd -rw-r--r--. 1 hadoop hadoop 1010 7月 1 2017 spark-shell.cmd -rwxr-xr-x. 1 hadoop hadoop 1065 7月 1 2017 spark-sql -rwxr-xr-x. 1 hadoop hadoop 1040 7月 1 2017 spark-submit -rw-r--r--. 1 hadoop hadoop 1128 7月 1 2017 spark-submit2.cmd -rw-r--r--. 1 hadoop hadoop 1012 7月 1 2017 spark-submit.cmd
[root@node01 bin]# cd ..
[root@node01 spark-2.2.0-bin-hadoop2.7]# ./bin/spark-submit --class com.jiehui.test.SpakTest --master yarn --deploy-mode cluster /root/project/sparktest/target/sparktest-1.0-SNAPSHOT-jar-with-dependencies.jar yarn
使用sprk-submit提交作业
执行的类 | --class com.jiehui.test.SparkTest |
使用yarn |
--master yarn |
部署方式是集群 | --deploy-mode cluster |
jar包的路径 | /root/project/sparktest/target/sparktest-1.0-SNAPSHOT-jar-with-dependencies.jar |
参数 |
yarn是参数 |
提交作业的namenode状态必须是active的,如果是standby就会报错:org.apache.hadoop.ipc.RemoteException(org.apache.hadoop.ipc.StandbyExceptio
- 查看namenode状态
hdfs haadmin -getServiceState nn1
- 激活namenode
hdfs haadmin -transitionToActive --forcemanual nn1
我们在命令中输入的是com.jiehui.test.SpakTest,由于我们输错了类的名字,因此程序不能正常运行
报错 Container exited with a non-zero exit code 10
client token: N/A diagnostics: Application application_1567500736308_0001 failed 2 times due to AM Container for appattempt_1567500736308_0001_000002 exited w Failing this attempt.Diagnostics: Exception from container-launch. Container id: container_1567500736308_0001_02_000001 Exit code: 10 Stack trace: ExitCodeException exitCode=10: at org.apache.hadoop.util.Shell.runCommand(Shell.java:972) at org.apache.hadoop.util.Shell.run(Shell.java:869) ... Container exited with a non-zero exit code 10 For more detailed output, check the application tracking page: http://node01:8088/cluster/app/application_1567500736308_0001 Then click on links to l . Failing the application. ApplicationMaster host: N/A ApplicationMaster RPC port: -1 queue: default start time: 1567500885640 final status: FAILED tracking URL: http://node01:8088/cluster/app/application_1567500736308_0001 user: root Exception in thread "main" org.apache.spark.SparkException: Application application_1567500736308_0001 finished with failed status at org.apache.spark.deploy.yarn.Client.run(Client.scala:1104) at org.apache.spark.deploy.yarn.Client$.main(Client.scala:1150) ...19/09/03 16:56:59 INFO util.ShutdownHookManager: Shutdown hook called 19/09/03 16:56:59 INFO util.ShutdownHookManager: Deleting directory /tmp/spark-57505652-7dc4-4bc3-9751-dbb3335025f8
通过上面的说明无法判断错误出在哪里,必须使用yarn命令查看作业日志
通过查看日志发现错误:
19/09/03 17:01:13 ERROR yarn.ApplicationMaster: Uncaught exception: java.lang.ClassNotFoundException: com.jiehui.test.SpakTest
找不到我们指定的类,经过观察发现名字出错,改正命令
./bin/spark-submit --class com.jiehui.test.SparkTest --master yarn --deploy-mode cluster /root/project/sparktest/target/sparktest-1.0-SNAPSHOT-jar-with-dependencies.jar yarn
程序成功运行,运行成功截图如下:
我们的Spark环境搭建成功了。