一、定义
X=an*(n-1)!+an-1*(n-2)!+...+ai*(i-1)!+...+a2*1!+a1*0!
ai为整数,并且0<=ai<i(1<=i<=n)
简单点说就是,判断这个数在其各个数字全排列中从小到大排第几位。
比如 132,在1、2、3的全排列中排第2位。
二、作用
维基:n位(0~n-1)全排列后,其康托展开唯一且最大约为n!,因此可以由更小的空间来储存这些排列。由公式可将X逆推出对应的全排列。
它可以应用于哈希表中空间压缩,
而且在搜索某些类型题时,将VIS数组量压缩。
三、康托展开求法
比如2143 这个数,求其展开:
从头判断,至尾结束,
① 比 2(第一位数)小的数有多少个->1个就是1,1*3!
② 比 1(第二位数)小的数有多少个->0个0*2!
③ 比 4(第三位数)小的数有多少个->3个就是1,2,3,但是1,2之前已经出现,所以是 1*1!
将所有乘积相加=7
比该数小的数有7个,所以该数排第8的位置。
1234 1243 1324 1342 1423 1432
2134 2143 2314 2341 2413 2431
3124 3142 3214 3241 3412 3421
4123 4132 4213 4231 4312 4321
四、代码
int fac[] = {1,1,2,6,24,120,720,5040,40320}; //i的阶乘为fac[i] // 康托展开-> 表示数字a是 a的全排列中从小到大排,排第几 // n表示1~n个数 a数组表示数字。 int kangtuo(int n,char a[]) { int i,j,t,sum; sum=0; for( i=0; i<n ;++i) { t=0; for(j=i+1;j<n;++j) if( a[i]>a[j] ) ++t; sum+=t*fac[n-i-1]; } return sum+1; }
五、康托展开的逆:
康托展开是一个全排列到自然数的双射,可以作为哈希函数。
所以当然也可以求逆运算了。
逆运算的方法:
假设求4位数中第19个位置的数字。
① 19减去1 → 18
② 18 对3!作除法 → 得3余0
③ 0对2!作除法 → 得0余0
④ 0对1!作除法 → 得0余0
据上面的可知:
我们第一位数(最左面的数),比第一位数小的数有3个,显然 第一位数为→ 4
比第二位数小的数字有0个,所以 第二位数为→1
比第三位数小的数字有0个,因为1已经用过,所以第三位数为→2
第四位数剩下 3
该数字为 4123 (正解)
用代码实现上述步骤为:
int fac[] = {1,1,2,6,24,120,720,5040,40320}; //康托展开的逆运算,{1...n}的全排列,中的第k个数为s[] void reverse_kangtuo(int n,int k,char s[]) { int i, j, t, vst[8]={0}; --k; for (i=0; i<n; i++) { t = k/fac[n-i-1]; for (j=1; j<=n; j++) if (!vst[j]) { if (t == 0) break; --t; } s[i] = '0'+j; vst[j] = 1; k %= fac[n-i-1]; } }