zoukankan      html  css  js  c++  java
  • [pycocotools修改]cocoeval.py

    __author__ = 'tsungyi'
    
    import numpy as np
    import datetime
    import time
    from collections import defaultdict
    from . import mask as maskUtils
    import copy
    import logging
    
    class COCOeval:
        # Interface for evaluating detection on the Microsoft COCO dataset.
        #
        # The usage for CocoEval is as follows:
        #  cocoGt=..., cocoDt=...       # load dataset and results
        #  E = CocoEval(cocoGt,cocoDt); # initialize CocoEval object
        #  E.params.recThrs = ...;      # set parameters as desired
        #  E.evaluate();                # run per image evaluation
        #  E.accumulate();              # accumulate per image results
        #  E.summarize();               # display summary metrics of results
        # For example usage see evalDemo.m and http://mscoco.org/.
        #
        # The evaluation parameters are as follows (defaults in brackets):
        #  imgIds     - [all] N img ids to use for evaluation
        #  catIds     - [all] K cat ids to use for evaluation
        #  iouThrs    - [.5:.05:.95] T=10 IoU thresholds for evaluation
        #  recThrs    - [0:.01:1] R=101 recall thresholds for evaluation
        #  areaRng    - [...] A=4 object area ranges for evaluation
        #  maxDets    - [1 10 100] M=3 thresholds on max detections per image
        #  iouType    - ['segm'] set iouType to 'segm', 'bbox' or 'keypoints'
        #  iouType replaced the now DEPRECATED useSegm parameter.
        #  useCats    - [1] if true use category labels for evaluation
        # Note: if useCats=0 category labels are ignored as in proposal scoring.
        # Note: multiple areaRngs [Ax2] and maxDets [Mx1] can be specified.
        #
        # evaluate(): evaluates detections on every image and every category and
        # concats the results into the "evalImgs" with fields:
        #  dtIds      - [1xD] id for each of the D detections (dt)
        #  gtIds      - [1xG] id for each of the G ground truths (gt)
        #  dtMatches  - [TxD] matching gt id at each IoU or 0
        #  gtMatches  - [TxG] matching dt id at each IoU or 0
        #  dtScores   - [1xD] confidence of each dt
        #  gtIgnore   - [1xG] ignore flag for each gt
        #  dtIgnore   - [TxD] ignore flag for each dt at each IoU
        #
        # accumulate(): accumulates the per-image, per-category evaluation
        # results in "evalImgs" into the dictionary "eval" with fields:
        #  params     - parameters used for evaluation
        #  date       - date evaluation was performed
        #  counts     - [T,R,K,A,M] parameter dimensions (see above)
        #  precision  - [TxRxKxAxM] precision for every evaluation setting
        #  recall     - [TxKxAxM] max recall for every evaluation setting
        # Note: precision and recall==-1 for settings with no gt objects.
        #
        # See also coco, mask, pycocoDemo, pycocoEvalDemo
        #
        # Microsoft COCO Toolbox.      version 2.0
        # Data, paper, and tutorials available at:  http://mscoco.org/
        # Code written by Piotr Dollar and Tsung-Yi Lin, 2015.
        # Licensed under the Simplified BSD License [see coco/license.txt]
        def __init__(self, cocoGt=None, cocoDt=None, iouType='segm'):
            '''
            Initialize CocoEval using coco APIs for gt and dt
            :param cocoGt: coco object with ground truth annotations
            :param cocoDt: coco object with detection results
            :return: None
            '''
            if not iouType:
                print('iouType not specified. use default iouType segm')
            self.cocoGt   = cocoGt              # ground truth COCO API
            self.cocoDt   = cocoDt              # detections COCO API
            self.params   = {}                  # evaluation parameters
            self.evalImgs = defaultdict(list)   # per-image per-category evaluation results [KxAxI] elements
            self.eval     = {}                  # accumulated evaluation results
            self._gts = defaultdict(list)       # gt for evaluation
            self._dts = defaultdict(list)       # dt for evaluation
            self.params = Params(iouType=iouType) # parameters
            self._paramsEval = {}               # parameters for evaluation
            self.stats = []                     # result summarization
            self.ious = {}                      # ious between all gts and dts
            if not cocoGt is None:
                self.params.imgIds = sorted(cocoGt.getImgIds())
                self.params.catIds = sorted(cocoGt.getCatIds())
    
    
        def _prepare(self):
            '''
            Prepare ._gts and ._dts for evaluation based on params
            :return: None
            '''
            def _toMask(anns, coco):
                # modify ann['segmentation'] by reference
                for ann in anns:
                    rle = coco.annToRLE(ann)
                    ann['segmentation'] = rle
            p = self.params
            if p.useCats:
                gts=self.cocoGt.loadAnns(self.cocoGt.getAnnIds(imgIds=p.imgIds, catIds=p.catIds))
                dts=self.cocoDt.loadAnns(self.cocoDt.getAnnIds(imgIds=p.imgIds, catIds=p.catIds))
            else:
                gts=self.cocoGt.loadAnns(self.cocoGt.getAnnIds(imgIds=p.imgIds))
                dts=self.cocoDt.loadAnns(self.cocoDt.getAnnIds(imgIds=p.imgIds))
    
            # convert ground truth to mask if iouType == 'segm'
            if p.iouType == 'segm':
                _toMask(gts, self.cocoGt)
                _toMask(dts, self.cocoDt)
            # set ignore flag
            for gt in gts:
                gt['ignore'] = gt['ignore'] if 'ignore' in gt else 0
                gt['ignore'] = 'iscrowd' in gt and gt['iscrowd']
                if p.iouType == 'keypoints':
                    gt['ignore'] = (gt['num_keypoints'] == 0) or gt['ignore']
            self._gts = defaultdict(list)       # gt for evaluation
            self._dts = defaultdict(list)       # dt for evaluation
            for gt in gts:
                self._gts[gt['image_id'], gt['category_id']].append(gt)
            for dt in dts:
                self._dts[dt['image_id'], dt['category_id']].append(dt)
            self.evalImgs = defaultdict(list)   # per-image per-category evaluation results
            self.eval     = {}                  # accumulated evaluation results
    
        def evaluate(self):
            '''
            Run per image evaluation on given images and store results (a list of dict) in self.evalImgs
            :return: None
            '''
            tic = time.time()
            print('Running per image evaluation...')
            p = self.params
            # add backward compatibility if useSegm is specified in params
            if not p.useSegm is None:
                p.iouType = 'segm' if p.useSegm == 1 else 'bbox'
                print('useSegm (deprecated) is not None. Running {} evaluation'.format(p.iouType))
            print('Evaluate annotation type *{}*'.format(p.iouType))
            p.imgIds = list(np.unique(p.imgIds))
            if p.useCats:
                p.catIds = list(np.unique(p.catIds))
            p.maxDets = sorted(p.maxDets)
            self.params=p
    
            self._prepare()
            # loop through images, area range, max detection number
            catIds = p.catIds if p.useCats else [-1]
    
            if p.iouType == 'segm' or p.iouType == 'bbox':
                computeIoU = self.computeIoU
            elif p.iouType == 'keypoints':
                computeIoU = self.computeOks
            self.ious = {(imgId, catId): computeIoU(imgId, catId) 
                            for imgId in p.imgIds
                            for catId in catIds}
    
            evaluateImg = self.evaluateImg
            maxDet = p.maxDets[-1]
            self.evalImgs = [evaluateImg(imgId, catId, areaRng, maxDet)
                     for catId in catIds
                     for areaRng in p.areaRng
                     for imgId in p.imgIds
                 ]
            self._paramsEval = copy.deepcopy(self.params)
            toc = time.time()
            print('DONE (t={:0.2f}s).'.format(toc-tic))
    
        def computeIoU(self, imgId, catId):
            p = self.params
            if p.useCats:
                gt = self._gts[imgId,catId]
                dt = self._dts[imgId,catId]
            else:
                gt = [_ for cId in p.catIds for _ in self._gts[imgId,cId]]
                dt = [_ for cId in p.catIds for _ in self._dts[imgId,cId]]
            if len(gt) == 0 and len(dt) ==0:
                return []
            inds = np.argsort([-d['score'] for d in dt], kind='mergesort')
            dt = [dt[i] for i in inds]
            if len(dt) > p.maxDets[-1]:
                dt=dt[0:p.maxDets[-1]]
    
            if p.iouType == 'segm':
                g = [g['segmentation'] for g in gt]
                d = [d['segmentation'] for d in dt]
            elif p.iouType == 'bbox':
                g = [g['bbox'] for g in gt]
                d = [d['bbox'] for d in dt]
            else:
                raise Exception('unknown iouType for iou computation')
    
            # compute iou between each dt and gt region
            iscrowd = [int(o['iscrowd']) for o in gt]
            ious = maskUtils.iou(d,g,iscrowd)
            return ious
    
        def computeOks(self, imgId, catId):
            p = self.params
            # dimention here should be Nxm
            gts = self._gts[imgId, catId]
            dts = self._dts[imgId, catId]
            inds = np.argsort([-d['score'] for d in dts], kind='mergesort')
            dts = [dts[i] for i in inds]
            if len(dts) > p.maxDets[-1]:
                dts = dts[0:p.maxDets[-1]]
            # if len(gts) == 0 and len(dts) == 0:
            if len(gts) == 0 or len(dts) == 0:
                return []
            ious = np.zeros((len(dts), len(gts)))
            sigmas = np.array([.26, .25, .25, .35, .35, .79, .79, .72, .72, .62,.62, 1.07, 1.07, .87, .87, .89, .89])/10.0
            vars = (sigmas * 2)**2
            k = len(sigmas)
            # compute oks between each detection and ground truth object
            for j, gt in enumerate(gts):
                # create bounds for ignore regions(double the gt bbox)
                g = np.array(gt['keypoints'])
                xg = g[0::3]; yg = g[1::3]; vg = g[2::3]
                k1 = np.count_nonzero(vg > 0)
                bb = gt['bbox']
                x0 = bb[0] - bb[2]; x1 = bb[0] + bb[2] * 2
                y0 = bb[1] - bb[3]; y1 = bb[1] + bb[3] * 2
                for i, dt in enumerate(dts):
                    d = np.array(dt['keypoints'])
                    xd = d[0::3]; yd = d[1::3]
                    if k1>0:
                        # measure the per-keypoint distance if keypoints visible
                        dx = xd - xg
                        dy = yd - yg
                    else:
                        # measure minimum distance to keypoints in (x0,y0) & (x1,y1)
                        z = np.zeros((k))
                        dx = np.max((z, x0-xd),axis=0)+np.max((z, xd-x1),axis=0)
                        dy = np.max((z, y0-yd),axis=0)+np.max((z, yd-y1),axis=0)
                    e = (dx**2 + dy**2) / vars / (gt['area']+np.spacing(1)) / 2
                    if k1 > 0:
                        e=e[vg > 0]
                    ious[i, j] = np.sum(np.exp(-e)) / e.shape[0]
            return ious
    
        def evaluateImg(self, imgId, catId, aRng, maxDet):
            '''
            perform evaluation for single category and image
            :return: dict (single image results)
            '''
            p = self.params
            if p.useCats:
                gt = self._gts[imgId,catId]
                dt = self._dts[imgId,catId]
            else:
                gt = [_ for cId in p.catIds for _ in self._gts[imgId,cId]]
                dt = [_ for cId in p.catIds for _ in self._dts[imgId,cId]]
            if len(gt) == 0 and len(dt) ==0:
                return None
    
            for g in gt:
                if g['ignore'] or (g['area']<aRng[0] or g['area']>aRng[1]):
                    g['_ignore'] = 1
                else:
                    g['_ignore'] = 0
    
            # sort dt highest score first, sort gt ignore last
            gtind = np.argsort([g['_ignore'] for g in gt], kind='mergesort')
            gt = [gt[i] for i in gtind]
            dtind = np.argsort([-d['score'] for d in dt], kind='mergesort')
            dt = [dt[i] for i in dtind[0:maxDet]]
            iscrowd = [int(o['iscrowd']) for o in gt]
            # load computed ious
            ious = self.ious[imgId, catId][:, gtind] if len(self.ious[imgId, catId]) > 0 else self.ious[imgId, catId]
    
            T = len(p.iouThrs)
            G = len(gt)
            D = len(dt)
            gtm  = np.zeros((T,G))
            dtm  = np.zeros((T,D))
            gtIg = np.array([g['_ignore'] for g in gt])
            dtIg = np.zeros((T,D))
            if not len(ious)==0:
                for tind, t in enumerate(p.iouThrs):
                    for dind, d in enumerate(dt):
                        # information about best match so far (m=-1 -> unmatched)
                        iou = min([t,1-1e-10])
                        m   = -1
                        for gind, g in enumerate(gt):
                            # if this gt already matched, and not a crowd, continue
                            if gtm[tind,gind]>0 and not iscrowd[gind]:
                                continue
                            # if dt matched to reg gt, and on ignore gt, stop
                            if m>-1 and gtIg[m]==0 and gtIg[gind]==1:
                                break
                            # continue to next gt unless better match made
                            if ious[dind,gind] < iou:
                                continue
                            # if match successful and best so far, store appropriately
                            iou=ious[dind,gind]
                            m=gind
                        # if match made store id of match for both dt and gt
                        if m ==-1:
                            continue
                        dtIg[tind,dind] = gtIg[m]
                        dtm[tind,dind]  = gt[m]['id']
                        gtm[tind,m]     = d['id']
            # set unmatched detections outside of area range to ignore
            a = np.array([d['area']<aRng[0] or d['area']>aRng[1] for d in dt]).reshape((1, len(dt)))
            dtIg = np.logical_or(dtIg, np.logical_and(dtm==0, np.repeat(a,T,0)))
            # store results for given image and category
            return {
                    'image_id':     imgId,
                    'category_id':  catId,
                    'aRng':         aRng,
                    'maxDet':       maxDet,
                    'dtIds':        [d['id'] for d in dt],
                    'gtIds':        [g['id'] for g in gt],
                    'dtMatches':    dtm,
                    'gtMatches':    gtm,
                    'dtScores':     [d['score'] for d in dt],
                    'gtIgnore':     gtIg,
                    'dtIgnore':     dtIg,
                }
    
        def accumulate(self, p = None):
            '''
            Accumulate per image evaluation results and store the result in self.eval
            :param p: input params for evaluation
            :return: None
            '''
            print('Accumulating evaluation results...')
            tic = time.time()
            if not self.evalImgs:
                print('Please run evaluate() first')
            # allows input customized parameters
            if p is None:
                p = self.params
            p.catIds = p.catIds if p.useCats == 1 else [-1]
            T           = len(p.iouThrs)
            R           = len(p.recThrs)
            K           = len(p.catIds) if p.useCats else 1
            A           = len(p.areaRng)
            M           = len(p.maxDets)
            precision   = -np.ones((T,R,K,A,M)) # -1 for the precision of absent categories
            recall      = -np.ones((T,K,A,M))
            scores      = -np.ones((T,R,K,A,M))
    
            # create dictionary for future indexing
            _pe = self._paramsEval
            catIds = _pe.catIds if _pe.useCats else [-1]
            setK = set(catIds)
            setA = set(map(tuple, _pe.areaRng))
            setM = set(_pe.maxDets)
            setI = set(_pe.imgIds)
            # get inds to evaluate
            k_list = [n for n, k in enumerate(p.catIds)  if k in setK]
            m_list = [m for n, m in enumerate(p.maxDets) if m in setM]
            a_list = [n for n, a in enumerate(map(lambda x: tuple(x), p.areaRng)) if a in setA]
            i_list = [n for n, i in enumerate(p.imgIds)  if i in setI]
            I0 = len(_pe.imgIds)
            A0 = len(_pe.areaRng)
            # retrieve E at each category, area range, and max number of detections
            for k, k0 in enumerate(k_list):
                Nk = k0*A0*I0
                for a, a0 in enumerate(a_list):
                    Na = a0*I0
                    for m, maxDet in enumerate(m_list):
                        E = [self.evalImgs[Nk + Na + i] for i in i_list]
                        E = [e for e in E if not e is None]
                        if len(E) == 0:
                            continue
                        dtScores = np.concatenate([e['dtScores'][0:maxDet] for e in E])
    
                        # different sorting method generates slightly different results.
                        # mergesort is used to be consistent as Matlab implementation.
                        inds = np.argsort(-dtScores, kind='mergesort')
                        dtScoresSorted = dtScores[inds]
    
                        dtm  = np.concatenate([e['dtMatches'][:,0:maxDet] for e in E], axis=1)[:,inds]
                        dtIg = np.concatenate([e['dtIgnore'][:,0:maxDet]  for e in E], axis=1)[:,inds]
                        gtIg = np.concatenate([e['gtIgnore'] for e in E])
                        npig = np.count_nonzero(gtIg==0 )
                        if npig == 0:
                            continue
                        tps = np.logical_and(               dtm,  np.logical_not(dtIg) )
                        fps = np.logical_and(np.logical_not(dtm), np.logical_not(dtIg) )
    
                        tp_sum = np.cumsum(tps, axis=1).astype(dtype=np.float)
                        fp_sum = np.cumsum(fps, axis=1).astype(dtype=np.float)
                        for t, (tp, fp) in enumerate(zip(tp_sum, fp_sum)):
                            tp = np.array(tp)
                            fp = np.array(fp)
                            nd = len(tp)
                            rc = tp / npig
                            pr = tp / (fp+tp+np.spacing(1))
                            q  = np.zeros((R,))
                            ss = np.zeros((R,))
    
                            if nd:
                                recall[t,k,a,m] = rc[-1]
                            else:
                                recall[t,k,a,m] = 0
    
                            # numpy is slow without cython optimization for accessing elements
                            # use python array gets significant speed improvement
                            pr = pr.tolist(); q = q.tolist()
    
                            for i in range(nd-1, 0, -1):
                                if pr[i] > pr[i-1]:
                                    pr[i-1] = pr[i]
    
                            inds = np.searchsorted(rc, p.recThrs, side='left')
                            try:
                                for ri, pi in enumerate(inds):
                                    q[ri] = pr[pi]
                                    ss[ri] = dtScoresSorted[pi]
                            except:
                                pass
                            precision[t,:,k,a,m] = np.array(q)
                            scores[t,:,k,a,m] = np.array(ss)
            self.eval = {
                'params': p,
                'counts': [T, R, K, A, M],
                'date': datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S'),
                'precision': precision,
                'recall':   recall,
                'scores': scores,
            }
            toc = time.time()
            print('DONE (t={:0.2f}s).'.format( toc-tic))
            logging.info('DONE cocoeval::accumulate() (t={:0.2f}s).'.format( toc-tic))
    
        def summarize(self):
            '''
            Compute and display summary metrics for evaluation results.
            Note this functin can *only* be applied on the default parameter setting
            '''
            def _summarize( ap=1, iouThr=None, areaRng='all', maxDets=100 ):
                p = self.params
                iStr = ' {:<18} {} @[ IoU={:<9} | area={:>6s} | maxDets={:>3d} ] = {:0.3f}'
                titleStr = 'Average Precision' if ap == 1 else 'Average Recall'
                typeStr = '(AP)' if ap==1 else '(AR)'
                iouStr = '{:0.2f}:{:0.2f}'.format(p.iouThrs[0], p.iouThrs[-1]) 
                    if iouThr is None else '{:0.2f}'.format(iouThr)
    
                aind = [i for i, aRng in enumerate(p.areaRngLbl) if aRng == areaRng]
                mind = [i for i, mDet in enumerate(p.maxDets) if mDet == maxDets]
                if ap == 1:
                    # dimension of precision: [TxRxKxAxM]
                    s = self.eval['precision']
                    # IoU
                    if iouThr is not None:
                        t = np.where(iouThr == p.iouThrs)[0]
                        s = s[t]
                    s = s[:,:,:,aind,mind]
                else:
                    # dimension of recall: [TxKxAxM]
                    s = self.eval['recall']
                    if iouThr is not None:
                        t = np.where(iouThr == p.iouThrs)[0]
                        s = s[t]
                    s = s[:,:,aind,mind]
                if len(s[s>-1])==0:
                    mean_s = -1
                else:
                    mean_s = np.mean(s[s>-1])
                print(iStr.format(titleStr, typeStr, iouStr, areaRng, maxDets, mean_s))
                logging.info(iStr.format(titleStr, typeStr, iouStr, areaRng, maxDets, mean_s))
                return mean_s
            def _summarizeDets():
                stats = np.zeros((12,))
                stats[0] = _summarize(1)
                stats[1] = _summarize(1, iouThr=.5, maxDets=self.params.maxDets[2])
                stats[2] = _summarize(1, iouThr=.75, maxDets=self.params.maxDets[2])
                stats[3] = _summarize(1, areaRng='small', maxDets=self.params.maxDets[2])
                stats[4] = _summarize(1, areaRng='medium', maxDets=self.params.maxDets[2])
                stats[5] = _summarize(1, areaRng='large', maxDets=self.params.maxDets[2])
                stats[6] = _summarize(0, maxDets=self.params.maxDets[0])
                stats[7] = _summarize(0, maxDets=self.params.maxDets[1])
                stats[8] = _summarize(0, maxDets=self.params.maxDets[2])
                stats[9] = _summarize(0, areaRng='small', maxDets=self.params.maxDets[2])
                stats[10] = _summarize(0, areaRng='medium', maxDets=self.params.maxDets[2])
                stats[11] = _summarize(0, areaRng='large', maxDets=self.params.maxDets[2])
                return stats
            def _summarizeKps():
                stats = np.zeros((10,))
                stats[0] = _summarize(1, maxDets=20)
                stats[1] = _summarize(1, maxDets=20, iouThr=.5)
                stats[2] = _summarize(1, maxDets=20, iouThr=.75)
                stats[3] = _summarize(1, maxDets=20, areaRng='medium')
                stats[4] = _summarize(1, maxDets=20, areaRng='large')
                stats[5] = _summarize(0, maxDets=20)
                stats[6] = _summarize(0, maxDets=20, iouThr=.5)
                stats[7] = _summarize(0, maxDets=20, iouThr=.75)
                stats[8] = _summarize(0, maxDets=20, areaRng='medium')
                stats[9] = _summarize(0, maxDets=20, areaRng='large')
                return stats
            if not self.eval:
                raise Exception('Please run accumulate() first')
            iouType = self.params.iouType
            if iouType == 'segm' or iouType == 'bbox':
                summarize = _summarizeDets
            elif iouType == 'keypoints':
                summarize = _summarizeKps
            self.stats = summarize()
    
        def __str__(self):
            self.summarize()
    
    class Params:
        '''
        Params for coco evaluation api
        '''
        def setDetParams(self):
            self.imgIds = []
            self.catIds = []
            # np.arange causes trouble.  the data point on arange is slightly larger than the true value
            self.iouThrs = np.linspace(.5, 0.95, np.round((0.95 - .5) / .05) + 1, endpoint=True)
            self.recThrs = np.linspace(.0, 1.00, np.round((1.00 - .0) / .01) + 1, endpoint=True)
            self.maxDets = [1, 10, 100]
            self.areaRng = [[0 ** 2, 1e5 ** 2], [0 ** 2, 32 ** 2], [32 ** 2, 96 ** 2], [96 ** 2, 1e5 ** 2]]
            self.areaRngLbl = ['all', 'small', 'medium', 'large']
            self.useCats = 1
    
        def setKpParams(self):
            self.imgIds = []
            self.catIds = []
            # np.arange causes trouble.  the data point on arange is slightly larger than the true value
            self.iouThrs = np.linspace(.5, 0.95, np.round((0.95 - .5) / .05) + 1, endpoint=True)
            self.recThrs = np.linspace(.0, 1.00, np.round((1.00 - .0) / .01) + 1, endpoint=True)
            self.maxDets = [20]
            self.areaRng = [[0 ** 2, 1e5 ** 2], [32 ** 2, 96 ** 2], [96 ** 2, 1e5 ** 2]]
            self.areaRngLbl = ['all', 'medium', 'large']
            self.useCats = 1
    
        def __init__(self, iouType='segm'):
            if iouType == 'segm' or iouType == 'bbox':
                self.setDetParams()
            elif iouType == 'keypoints':
                self.setKpParams()
            else:
                raise Exception('iouType not supported')
            self.iouType = iouType
            # useSegm is deprecated
            self.useSegm = None
  • 相关阅读:
    Laravel框架一:原理机制篇
    Python2.7安装(win7)
    Oracle连接查询
    windows7-PowerDesigner 15.1 的安装图解
    Apache+php+mysql+SQLyog在windows7下的安装与配置图解
    windows7-SQLyog 安装图解
    4个mysql客户端工具的比较
    Windows7-32bit系统安装MySQL-5.5.39-win32.msi服务图解
    win7搭建web服务器
    win7下如何建立ftp服务器
  • 原文地址:https://www.cnblogs.com/aimhabo/p/10108465.html
Copyright © 2011-2022 走看看