zoukankan      html  css  js  c++  java
  • [pytorch修改]dataloader.py 实现darknet中的subdivision功能

    dataloader.py 

    import random
    import torch
    import torch.multiprocessing as multiprocessing
    from torch._C import _set_worker_signal_handlers, _update_worker_pids, 
        _remove_worker_pids, _error_if_any_worker_fails
    from . import SequentialSampler, RandomSampler, BatchSampler
    import signal
    import functools
    import collections
    import re
    import sys
    import threading
    import traceback
    import os
    import time
    from torch._six import string_classes, int_classes, FileNotFoundError
    
    IS_WINDOWS = sys.platform == "win32"
    if IS_WINDOWS:
        import ctypes
        from ctypes.wintypes import DWORD, BOOL, HANDLE
    
    if sys.version_info[0] == 2:
        import Queue as queue
    else:
        import queue
    
    
    class ExceptionWrapper(object):
        r"""Wraps an exception plus traceback to communicate across threads"""
    
        def __init__(self, exc_info):
            self.exc_type = exc_info[0]
            self.exc_msg = "".join(traceback.format_exception(*exc_info))
    
    
    _use_shared_memory = False
    r"""Whether to use shared memory in default_collate"""
    
    MANAGER_STATUS_CHECK_INTERVAL = 5.0
    
    if IS_WINDOWS:
        # On Windows, the parent ID of the worker process remains unchanged when the manager process
        # is gone, and the only way to check it through OS is to let the worker have a process handle
        # of the manager and ask if the process status has changed.
        class ManagerWatchdog(object):
            def __init__(self):
                self.manager_pid = os.getppid()
    
                self.kernel32 = ctypes.WinDLL('kernel32', use_last_error=True)
                self.kernel32.OpenProcess.argtypes = (DWORD, BOOL, DWORD)
                self.kernel32.OpenProcess.restype = HANDLE
                self.kernel32.WaitForSingleObject.argtypes = (HANDLE, DWORD)
                self.kernel32.WaitForSingleObject.restype = DWORD
    
                # Value obtained from https://msdn.microsoft.com/en-us/library/ms684880.aspx
                SYNCHRONIZE = 0x00100000
                self.manager_handle = self.kernel32.OpenProcess(SYNCHRONIZE, 0, self.manager_pid)
    
                if not self.manager_handle:
                    raise ctypes.WinError(ctypes.get_last_error())
    
            def is_alive(self):
                # Value obtained from https://msdn.microsoft.com/en-us/library/windows/desktop/ms687032.aspx
                return self.kernel32.WaitForSingleObject(self.manager_handle, 0) != 0
    else:
        class ManagerWatchdog(object):
            def __init__(self):
                self.manager_pid = os.getppid()
    
            def is_alive(self):
                return os.getppid() == self.manager_pid
    
    
    def _worker_loop(dataset, index_queue, data_queue, collate_fn, seed, init_fn, worker_id):
        global _use_shared_memory
        _use_shared_memory = True
    
        # Intialize C side signal handlers for SIGBUS and SIGSEGV. Python signal
        # module's handlers are executed after Python returns from C low-level
        # handlers, likely when the same fatal signal happened again already.
        # https://docs.python.org/3/library/signal.html Sec. 18.8.1.1
        _set_worker_signal_handlers()
    
        torch.set_num_threads(1)
        random.seed(seed)
        torch.manual_seed(seed)
    
        if init_fn is not None:
            init_fn(worker_id)
    
        watchdog = ManagerWatchdog()
    
        while True:
            try:
                r = index_queue.get(timeout=MANAGER_STATUS_CHECK_INTERVAL)
            except queue.Empty:
                if watchdog.is_alive():
                    continue
                else:
                    break
            if r is None:
                break
            idx, batch_indices = r
            try:
                samples = collate_fn([dataset[i] for i in batch_indices])
            except Exception:
                data_queue.put((idx, ExceptionWrapper(sys.exc_info())))
            else:
                data_queue.put((idx, samples))
                del samples
    
    
    def _worker_manager_loop(in_queue, out_queue, done_event, pin_memory, device_id):
        if pin_memory:
            torch.cuda.set_device(device_id)
    
        while True:
            try:
                r = in_queue.get()
            except Exception:
                if done_event.is_set():
                    return
                raise
            if r is None:
                break
            if isinstance(r[1], ExceptionWrapper):
                out_queue.put(r)
                continue
            idx, batch = r
            try:
                if pin_memory:
                    batch = pin_memory_batch(batch)
            except Exception:
                out_queue.put((idx, ExceptionWrapper(sys.exc_info())))
            else:
                out_queue.put((idx, batch))
    
    numpy_type_map = {
        'float64': torch.DoubleTensor,
        'float32': torch.FloatTensor,
        'float16': torch.HalfTensor,
        'int64': torch.LongTensor,
        'int32': torch.IntTensor,
        'int16': torch.ShortTensor,
        'int8': torch.CharTensor,
        'uint8': torch.ByteTensor,
    }
    
    
    def default_collate(batch):
        r"""Puts each data field into a tensor with outer dimension batch size"""
    
        error_msg = "batch must contain tensors, numbers, dicts or lists; found {}"
        elem_type = type(batch[0])
        if isinstance(batch[0], torch.Tensor):
            out = None
            if _use_shared_memory:
                # If we're in a background process, concatenate directly into a
                # shared memory tensor to avoid an extra copy
                numel = sum([x.numel() for x in batch])
                storage = batch[0].storage()._new_shared(numel)
                out = batch[0].new(storage)
            return torch.stack(batch, 0, out=out)
        elif elem_type.__module__ == 'numpy' and elem_type.__name__ != 'str_' 
                and elem_type.__name__ != 'string_':
            elem = batch[0]
            if elem_type.__name__ == 'ndarray':
                # array of string classes and object
                if re.search('[SaUO]', elem.dtype.str) is not None:
                    raise TypeError(error_msg.format(elem.dtype))
    
                return torch.stack([torch.from_numpy(b) for b in batch], 0)
            if elem.shape == ():  # scalars
                py_type = float if elem.dtype.name.startswith('float') else int
                return numpy_type_map[elem.dtype.name](list(map(py_type, batch)))
        elif isinstance(batch[0], int_classes):
            return torch.LongTensor(batch)
        elif isinstance(batch[0], float):
            return torch.DoubleTensor(batch)
        elif isinstance(batch[0], string_classes):
            return batch
        elif isinstance(batch[0], collections.Mapping):
            return {key: default_collate([d[key] for d in batch]) for key in batch[0]}
        elif isinstance(batch[0], collections.Sequence):
            transposed = zip(*batch)
            return [default_collate(samples) for samples in transposed]
    
        raise TypeError((error_msg.format(type(batch[0]))))
    
    
    def pin_memory_batch(batch):
        if isinstance(batch, torch.Tensor):
            return batch.pin_memory()
        elif isinstance(batch, string_classes):
            return batch
        elif isinstance(batch, collections.Mapping):
            return {k: pin_memory_batch(sample) for k, sample in batch.items()}
        elif isinstance(batch, collections.Sequence):
            return [pin_memory_batch(sample) for sample in batch]
        else:
            return batch
    
    
    _SIGCHLD_handler_set = False
    r"""Whether SIGCHLD handler is set for DataLoader worker failures. Only one
    handler needs to be set for all DataLoaders in a process."""
    
    
    def _set_SIGCHLD_handler():
        # Windows doesn't support SIGCHLD handler
        if sys.platform == 'win32':
            return
        # can't set signal in child threads
        if not isinstance(threading.current_thread(), threading._MainThread):
            return
        global _SIGCHLD_handler_set
        if _SIGCHLD_handler_set:
            return
        previous_handler = signal.getsignal(signal.SIGCHLD)
        if not callable(previous_handler):
            previous_handler = None
    
        def handler(signum, frame):
            # This following call uses `waitid` with WNOHANG from C side. Therefore,
            # Python can still get and update the process status successfully.
            _error_if_any_worker_fails()
            if previous_handler is not None:
                previous_handler(signum, frame)
    
        signal.signal(signal.SIGCHLD, handler)
        _SIGCHLD_handler_set = True
    
    
    class _DataLoaderIter(object):
        r"""Iterates once over the DataLoader's dataset, as specified by the sampler"""
    
        def __init__(self, loader):
            self.dataset = loader.dataset
            self.collate_fn = loader.collate_fn
            self.batch_sampler = loader.batch_sampler
            self.num_workers = loader.num_workers
            self.pin_memory = loader.pin_memory and torch.cuda.is_available()
            self.timeout = loader.timeout
            self.done_event = threading.Event()
    
            self.sample_iter = iter(self.batch_sampler)
    
            base_seed = torch.LongTensor(1).random_().item()
    
            if self.num_workers > 0:
                self.worker_init_fn = loader.worker_init_fn
                self.index_queues = [multiprocessing.Queue() for _ in range(self.num_workers)]
                self.worker_queue_idx = 0
                self.worker_result_queue = multiprocessing.SimpleQueue()
                self.batches_outstanding = 0
                self.worker_pids_set = False
                self.shutdown = False
                self.send_idx = 0
                self.rcvd_idx = 0
                self.reorder_dict = {}
    
                self.workers = [
                    multiprocessing.Process(
                        target=_worker_loop,
                        args=(self.dataset, self.index_queues[i],
                              self.worker_result_queue, self.collate_fn, base_seed + i,
                              self.worker_init_fn, i))
                    for i in range(self.num_workers)]
    
                if self.pin_memory or self.timeout > 0:
                    self.data_queue = queue.Queue()
                    if self.pin_memory:
                        maybe_device_id = torch.cuda.current_device()
                    else:
                        # do not initialize cuda context if not necessary
                        maybe_device_id = None
                    self.worker_manager_thread = threading.Thread(
                        target=_worker_manager_loop,
                        args=(self.worker_result_queue, self.data_queue, self.done_event, self.pin_memory,
                              maybe_device_id))
                    self.worker_manager_thread.daemon = True
                    self.worker_manager_thread.start()
                else:
                    self.data_queue = self.worker_result_queue
    
                for w in self.workers:
                    w.daemon = True  # ensure that the worker exits on process exit
                    w.start()
    
                _update_worker_pids(id(self), tuple(w.pid for w in self.workers))
                _set_SIGCHLD_handler()
                self.worker_pids_set = True
    
                # prime the prefetch loop
                for _ in range(2 * self.num_workers):
                    self._put_indices()
    
        def __len__(self):
            return len(self.batch_sampler)
    
        def _get_batch(self):
            if self.timeout > 0:
                try:
                    return self.data_queue.get(timeout=self.timeout)
                except queue.Empty:
                    raise RuntimeError('DataLoader timed out after {} seconds'.format(self.timeout))
            else:
                return self.data_queue.get()
    
        def __next__(self):
            if self.num_workers == 0:  # same-process loading
                indices = next(self.sample_iter)  # may raise StopIteration
                batch = self.collate_fn([self.dataset[i] for i in indices])
                if self.pin_memory:
                    batch = pin_memory_batch(batch)
                return batch
    
            # check if the next sample has already been generated
            if self.rcvd_idx in self.reorder_dict:
                batch = self.reorder_dict.pop(self.rcvd_idx)
                return self._process_next_batch(batch)
    
            if self.batches_outstanding == 0:
                self._shutdown_workers()
                raise StopIteration
    
            while True:
                assert (not self.shutdown and self.batches_outstanding > 0)
                idx, batch = self._get_batch()
                self.batches_outstanding -= 1
                if idx != self.rcvd_idx:
                    # store out-of-order samples
                    self.reorder_dict[idx] = batch
                    continue
                return self._process_next_batch(batch)
    
        next = __next__  # Python 2 compatibility
    
        def __iter__(self):
            return self
    
        def _put_indices(self):
            assert self.batches_outstanding < 2 * self.num_workers
            indices = next(self.sample_iter, None)
            if indices is None:
                return
            self.index_queues[self.worker_queue_idx].put((self.send_idx, indices))
            self.worker_queue_idx = (self.worker_queue_idx + 1) % self.num_workers
            self.batches_outstanding += 1
            self.send_idx += 1
    
        def _process_next_batch(self, batch):
            self.rcvd_idx += 1
            self._put_indices()
            if isinstance(batch, ExceptionWrapper):
                raise batch.exc_type(batch.exc_msg)
            return batch
    
        def __getstate__(self):
            # TODO: add limited pickling support for sharing an iterator
            # across multiple threads for HOGWILD.
            # Probably the best way to do this is by moving the sample pushing
            # to a separate thread and then just sharing the data queue
            # but signalling the end is tricky without a non-blocking API
            raise NotImplementedError("_DataLoaderIter cannot be pickled")
    
        def _shutdown_workers(self):
            try:
                if not self.shutdown:
                    self.shutdown = True
                    self.done_event.set()
                    for q in self.index_queues:
                        q.put(None)
                    # if some workers are waiting to put, make place for them
                    try:
                        while not self.worker_result_queue.empty():
                            self.worker_result_queue.get()
                    except (FileNotFoundError, ImportError):
                        # Many weird errors can happen here due to Python
                        # shutting down. These are more like obscure Python bugs.
                        # FileNotFoundError can happen when we rebuild the fd
                        # fetched from the queue but the socket is already closed
                        # from the worker side.
                        # ImportError can happen when the unpickler loads the
                        # resource from `get`.
                        pass
                    # done_event should be sufficient to exit worker_manager_thread,
                    # but be safe here and put another None
                    self.worker_result_queue.put(None)
            finally:
                # removes pids no matter what
                if self.worker_pids_set:
                    _remove_worker_pids(id(self))
                    self.worker_pids_set = False
    
        def __del__(self):
            if self.num_workers > 0:
                self._shutdown_workers()
    
    
    class DataLoader(object):
        r"""
        Data loader. Combines a dataset and a sampler, and provides
        single- or multi-process iterators over the dataset.
    
        Arguments:
            dataset (Dataset): dataset from which to load the data.
            batch_size (int, optional): how many samples per batch to load
                (default: 1).
            shuffle (bool, optional): set to ``True`` to have the data reshuffled
                at every epoch (default: False).
            sampler (Sampler, optional): defines the strategy to draw samples from
                the dataset. If specified, ``shuffle`` must be False.
            batch_sampler (Sampler, optional): like sampler, but returns a batch of
                indices at a time. Mutually exclusive with batch_size, shuffle,
                sampler, and drop_last.
            num_workers (int, optional): how many subprocesses to use for data
                loading. 0 means that the data will be loaded in the main process.
                (default: 0)
            collate_fn (callable, optional): merges a list of samples to form a mini-batch.
            pin_memory (bool, optional): If ``True``, the data loader will copy tensors
                into CUDA pinned memory before returning them.
            drop_last (bool, optional): set to ``True`` to drop the last incomplete batch,
                if the dataset size is not divisible by the batch size. If ``False`` and
                the size of dataset is not divisible by the batch size, then the last batch
                will be smaller. (default: False)
            timeout (numeric, optional): if positive, the timeout value for collecting a batch
                from workers. Should always be non-negative. (default: 0)
            worker_init_fn (callable, optional): If not None, this will be called on each
                worker subprocess with the worker id (an int in ``[0, num_workers - 1]``) as
                input, after seeding and before data loading. (default: None)
    
        .. note:: By default, each worker will have its PyTorch seed set to
                  ``base_seed + worker_id``, where ``base_seed`` is a long generated
                  by main process using its RNG. However, seeds for other libraies
                  may be duplicated upon initializing workers (w.g., NumPy), causing
                  each worker to return identical random numbers. (See
                  :ref:`dataloader-workers-random-seed` section in FAQ.) You may
                  use ``torch.initial_seed()`` to access the PyTorch seed for each
                  worker in :attr:`worker_init_fn`, and use it to set other seeds
                  before data loading.
    
        .. warning:: If ``spawn`` start method is used, :attr:`worker_init_fn` cannot be an
                     unpicklable object, e.g., a lambda function.
        """
    
        __initialized = False
    
        def __init__(self, dataset, batch_size=1, subdivison=1, shuffle=False, sampler=None, batch_sampler=None,
                     num_workers=0, collate_fn=default_collate, pin_memory=False, drop_last=False,
                     timeout=0, worker_init_fn=None):
            self.dataset = dataset
            self.batch_size_real = batch_size
            self.subdivision = subdivison
            self.batch_size = batch_size/subdivison
            self.num_workers = num_workers
            self.collate_fn = collate_fn
            self.pin_memory = pin_memory
            self.drop_last = drop_last
            self.timeout = timeout
            self.worker_init_fn = worker_init_fn
    
            if timeout < 0:
                raise ValueError('timeout option should be non-negative')
    
            if batch_sampler is not None:
                if batch_size > 1 or shuffle or sampler is not None or drop_last:
                    raise ValueError('batch_sampler option is mutually exclusive '
                                     'with batch_size, shuffle, sampler, and '
                                     'drop_last')
                self.batch_size = None
                self.drop_last = None
    
            if sampler is not None and shuffle:
                raise ValueError('sampler option is mutually exclusive with '
                                 'shuffle')
    
            if self.num_workers < 0:
                raise ValueError('num_workers option cannot be negative; '
                                 'use num_workers=0 to disable multiprocessing.')
    
            if batch_sampler is None:
                if sampler is None:
                    if shuffle:
                        sampler = RandomSampler(dataset)
                    else:
                        sampler = SequentialSampler(dataset)
                batch_sampler = BatchSampler(sampler, batch_size, drop_last)
    
            self.sampler = sampler
            self.batch_sampler = batch_sampler
            self.__initialized = True
    
        def __setattr__(self, attr, val):
            if self.__initialized and attr in ('batch_size', 'sampler', 'drop_last'):
                raise ValueError('{} attribute should not be set after {} is '
                                 'initialized'.format(attr, self.__class__.__name__))
    
            super(DataLoader, self).__setattr__(attr, val)
    
        def __iter__(self):
            return _DataLoaderIter(self)
    
        def __len__(self):
            return len(self.batch_sampler)
  • 相关阅读:
    C#多线程开发中如何更新UI界面控件内容
    C#中Invoke的用法(转)
    while loop, for loop
    basic bash learning 1
    Some useful link for leaning linux shell
    How to Adding ExtendReport in test framework
    如何解决Extent report 无法加载CSS样式 的问题
    Capturing Screenshots
    WebDriver switching to new window
    Data Driven Testing
  • 原文地址:https://www.cnblogs.com/aimhabo/p/9802580.html
Copyright © 2011-2022 走看看