zoukankan      html  css  js  c++  java
  • 绘制COCO数据集结果

    import os
    import time
    import datetime
    import mmcv
    import cv2 as cv
    import json
    import numpy as np
    import pycocotools.mask as maskutil
    import pycocotools.coco as COCO
    from itertools import groupby
    from skimage import measure,draw,data
    from PIL import Image
    
    def close_contour(contour):
        if not np.array_equal(contour[0], contour[-1]):
            contour = np.vstack((contour, contour[0]))
        return contour
    
    def binary_mask_to_polygon(binary_mask, tolerance=0):
        """Converts a binary mask to COCO polygon representation
        Args:
            binary_mask: a 2D binary numpy array where '1's represent the object
            tolerance: Maximum distance from original points of polygon to approximated
                polygonal chain. If tolerance is 0, the original coordinate array is returned.
        """
        polygons = []
        # pad mask to close contours of shapes which start and end at an edge
        padded_binary_mask = np.pad(binary_mask, pad_width=1, mode='constant', constant_values=0)
        contours = measure.find_contours(padded_binary_mask, 0.5)
        contours = np.subtract(contours, 1)
        for contour in contours:
            contour = close_contour(contour)
            contour = measure.approximate_polygon(contour, tolerance)
            if len(contour) < 3:
                continue
            contour = np.flip(contour, axis=1)
            segmentation = contour.ravel().tolist()
            # after padding and subtracting 1 we may get -0.5 points in our segmentation
            segmentation = [0 if i < 0 else i for i in segmentation]
            polygons.append(segmentation)
    
        return polygons
    
    def binary_mask_to_rle(binary_mask):
        rle = {'counts': [], 'size': list(binary_mask.shape)}
        counts = rle.get('counts')
        for i, (value, elements) in enumerate(groupby(binary_mask.ravel(order='F'))):
            if i == 0 and value == 1:
                    counts.append(0)
            counts.append(len(list(elements)))
        return rle
    
    
    def main2():
        seg=np.array([312.29, 562.89, 402.25, 511.49, 400.96, 425.38, 398.39, 372.69, 388.11, 332.85, 318.71, 325.14, 295.58, 305.86, 269.88, 314.86, 258.31, 337.99, 217.19, 321.29, 182.49, 343.13, 141.37, 348.27, 132.37, 358.55, 159.36, 377.83, 116.95, 421.53, 167.07, 499.92, 232.61, 560.32, 300.72, 571.89])
        compactedRLE = maskutil.frPyObjects([seg], 768, 768)
        print(compactedRLE)
        #compactedRLE=[
        # {"size":[768, 768],
        #     "counts": "`eQ66ig02O1O000000000000000000000000001O00000000000000000000000000000000000000000000000000000000O2O0NbZj:"
        #     }]
        mask = maskutil.decode(compactedRLE)
        mask=np.reshape(mask,(768,768))
        mask[:,:]=mask[:,:]*255
        print(mask)
        #mmcv.imshow(mask)
    
        '''
        mask=np.array(
            [
                [0, 0, 0, 0, 0, 0, 0, 0],
                [0, 0, 1, 1, 0, 0, 1, 0],
                [0, 0, 1, 1, 1, 1, 1, 0],
                [0, 0, 1, 1, 1, 1, 1, 0],
                [0, 0, 1, 1, 1, 1, 1, 0],
                [0, 0, 1, 0, 0, 0, 1, 0],
                [0, 0, 1, 0, 0, 0, 1, 0],
                [0, 0, 0, 0, 0, 0, 0, 0]
            ]
        )
        print(mask)
        '''
    
        poly=binary_mask_to_polygon(mask)
        print(poly)
        rle=binary_mask_to_rle(mask)
        print(rle)
        #mmcv.imshow(area)
    
        return 0
    
    def class2color(classes=1,class_id=0):
        sum = classes*12357
        return [sum%(class_id+0),sum%(class_id+1),sum%(class_id+2)]
    
    def mainContour():
        imgfile = "/home/wit/Pictures/7dd98d1001e9390100d9e95171ec54e737d19681.jpg"
        img = cv.imread(imgfile)
        h, w, _ = img.shape
    
        gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
    
        ret, thresh = cv.threshold(gray, 127, 255, cv.THRESH_BINARY)
    
        # Find Contour
        _, contours, hierarchy = cv.findContours(thresh, cv.RETR_TREE, cv.CHAIN_APPROX_NONE)
        print(contours)
    
    
    
    def main():
        testimagepath   = "/media/wit/WeiJX/AirbusShip/coco-labels/instances_ships_test2018.json"
        compressedRLECOCOlabelpath = "/media/wit/WeiJX/workspace/out/maskrcnn.reorg.pkl.json"
        imageprefix     = "/media/wit/WeiJX/AirbusShip/test-images/"
    
        startTime = time.time()
        trthset = json.load(open(testimagepath, 'r'))
        assert type(trthset) == dict, 'annotation file format {} not supported'.format(type(trthset))
        prdcset = json.load(open(compressedRLECOCOlabelpath, 'r'))
        assert type(prdcset) == dict, 'annotation file format {} not supported'.format(type(prdcset))
        print('Done (t={:0.2f}s)'.format(time.time() - startTime))
    
        ann_Y0 = trthset['annotations']
        ann_Y1 = prdcset['annotations']
    
        for image in trthset['images']:
            imagepath = imageprefix+image['file_name']
            img = cv.imread(imagepath)
    
            src = np.zeros((768,768,3), np.uint8)
            src[:,:,:]=img[:,:,:]
            dst = np.zeros((768,768,3), np.uint8)
            dst[:,:,:]=img[:,:,:]
    
            masks = np.zeros((768, 768, 1), np.uint8)
            masks.fill(0)
            id0 = image['id']
    
            counts = 0
    
            contours = []
            for target in ann_Y0:
                if target['image_id']==id0:
                    counts += 1
                    j=0
                    X=[]
                    Y=[]
                    for seg in target['segmentation'][0]:
                        if j == 0:
                            x = float(seg)
                            X.append(x)
                        else:
                            y = float(seg)
                            Y.append(y)
                        j = 1-j
    
                    rr, cc = draw.polygon(Y, X)
                    draw.set_color(src, [rr, cc], [0, 0, 255], 0.4)
    
                    Point = np.zeros((len(Y), 2), dtype='int32')
                    Point [:, 0] = X[:]
                    Point [:, 1] = Y[:]
                    #print(Point)
                    cv.fillPoly(masks, np.array([Point],'int32'), 1)
            src[:, :, 0] = img[:, :, 0] #* 0.9 + masks[:, :, 0] * 0.1 * 255.0 / counts
            src[:, :, 1] = img[:, :, 1] #* 0.9 + masks[:, :, 0] * 0.1 * 255.0 / counts
            src[:, :, 2] = img[:, :, 2] * 0.2 + masks[:, :, 0] * 0.8 * 255.0 / counts
    
            mmcv.imshow(src,"Y",1)
    
            masks.fill(0)
            counts = 0
            for target in ann_Y1:
                if target['image_id']==id0:
                    counts += 1
                    CRLE    = target['segmentation']
                    #print(CRLE)
                    mask    = maskutil.decode(CRLE)
                    mask    = np.reshape(mask, (img.shape[1], img.shape[0], 1))
                    masks[:, :] = masks[:, :] + mask[:, :]
    
            dst[:, :, 0] = img[:, :, 0] * 0.2 + masks[:, :, 0] * 0.8 * 255.0/counts
            dst[:, :, 1] = img[:, :, 1] #* 0.5 + masks[:, :, 0] * 0.5 * 255.0/counts
            dst[:, :, 2] = src[:, :, 2] * 0.9 + masks[:, :, 0] * 0.1 * 255.0/counts
            mmcv.imshow(dst,"Y'")
    
    
        return 0
    
    if __name__ == '__main__':
        main()
  • 相关阅读:
    我所理解的执行力
    iOS移动开发周报-第20期
    iOS移动开发周报-第19期
    iOS开发如何提高
    iOS移动开发周报-第18期
    iOS移动开发周报-第17期
    一起入门python3之元组和数列
    提权笔记本
    sqlmap笔记本
    SQL注入自学[第一学:一个简单的注入环境的编写]
  • 原文地址:https://www.cnblogs.com/aimhabo/p/9949276.html
Copyright © 2011-2022 走看看