zoukankan      html  css  js  c++  java
  • 绘制COCO数据集结果

    import os
    import time
    import datetime
    import mmcv
    import cv2 as cv
    import json
    import numpy as np
    import pycocotools.mask as maskutil
    import pycocotools.coco as COCO
    from itertools import groupby
    from skimage import measure,draw,data
    from PIL import Image
    
    def close_contour(contour):
        if not np.array_equal(contour[0], contour[-1]):
            contour = np.vstack((contour, contour[0]))
        return contour
    
    def binary_mask_to_polygon(binary_mask, tolerance=0):
        """Converts a binary mask to COCO polygon representation
        Args:
            binary_mask: a 2D binary numpy array where '1's represent the object
            tolerance: Maximum distance from original points of polygon to approximated
                polygonal chain. If tolerance is 0, the original coordinate array is returned.
        """
        polygons = []
        # pad mask to close contours of shapes which start and end at an edge
        padded_binary_mask = np.pad(binary_mask, pad_width=1, mode='constant', constant_values=0)
        contours = measure.find_contours(padded_binary_mask, 0.5)
        contours = np.subtract(contours, 1)
        for contour in contours:
            contour = close_contour(contour)
            contour = measure.approximate_polygon(contour, tolerance)
            if len(contour) < 3:
                continue
            contour = np.flip(contour, axis=1)
            segmentation = contour.ravel().tolist()
            # after padding and subtracting 1 we may get -0.5 points in our segmentation
            segmentation = [0 if i < 0 else i for i in segmentation]
            polygons.append(segmentation)
    
        return polygons
    
    def binary_mask_to_rle(binary_mask):
        rle = {'counts': [], 'size': list(binary_mask.shape)}
        counts = rle.get('counts')
        for i, (value, elements) in enumerate(groupby(binary_mask.ravel(order='F'))):
            if i == 0 and value == 1:
                    counts.append(0)
            counts.append(len(list(elements)))
        return rle
    
    
    def main2():
        seg=np.array([312.29, 562.89, 402.25, 511.49, 400.96, 425.38, 398.39, 372.69, 388.11, 332.85, 318.71, 325.14, 295.58, 305.86, 269.88, 314.86, 258.31, 337.99, 217.19, 321.29, 182.49, 343.13, 141.37, 348.27, 132.37, 358.55, 159.36, 377.83, 116.95, 421.53, 167.07, 499.92, 232.61, 560.32, 300.72, 571.89])
        compactedRLE = maskutil.frPyObjects([seg], 768, 768)
        print(compactedRLE)
        #compactedRLE=[
        # {"size":[768, 768],
        #     "counts": "`eQ66ig02O1O000000000000000000000000001O00000000000000000000000000000000000000000000000000000000O2O0NbZj:"
        #     }]
        mask = maskutil.decode(compactedRLE)
        mask=np.reshape(mask,(768,768))
        mask[:,:]=mask[:,:]*255
        print(mask)
        #mmcv.imshow(mask)
    
        '''
        mask=np.array(
            [
                [0, 0, 0, 0, 0, 0, 0, 0],
                [0, 0, 1, 1, 0, 0, 1, 0],
                [0, 0, 1, 1, 1, 1, 1, 0],
                [0, 0, 1, 1, 1, 1, 1, 0],
                [0, 0, 1, 1, 1, 1, 1, 0],
                [0, 0, 1, 0, 0, 0, 1, 0],
                [0, 0, 1, 0, 0, 0, 1, 0],
                [0, 0, 0, 0, 0, 0, 0, 0]
            ]
        )
        print(mask)
        '''
    
        poly=binary_mask_to_polygon(mask)
        print(poly)
        rle=binary_mask_to_rle(mask)
        print(rle)
        #mmcv.imshow(area)
    
        return 0
    
    def class2color(classes=1,class_id=0):
        sum = classes*12357
        return [sum%(class_id+0),sum%(class_id+1),sum%(class_id+2)]
    
    def mainContour():
        imgfile = "/home/wit/Pictures/7dd98d1001e9390100d9e95171ec54e737d19681.jpg"
        img = cv.imread(imgfile)
        h, w, _ = img.shape
    
        gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
    
        ret, thresh = cv.threshold(gray, 127, 255, cv.THRESH_BINARY)
    
        # Find Contour
        _, contours, hierarchy = cv.findContours(thresh, cv.RETR_TREE, cv.CHAIN_APPROX_NONE)
        print(contours)
    
    
    
    def main():
        testimagepath   = "/media/wit/WeiJX/AirbusShip/coco-labels/instances_ships_test2018.json"
        compressedRLECOCOlabelpath = "/media/wit/WeiJX/workspace/out/maskrcnn.reorg.pkl.json"
        imageprefix     = "/media/wit/WeiJX/AirbusShip/test-images/"
    
        startTime = time.time()
        trthset = json.load(open(testimagepath, 'r'))
        assert type(trthset) == dict, 'annotation file format {} not supported'.format(type(trthset))
        prdcset = json.load(open(compressedRLECOCOlabelpath, 'r'))
        assert type(prdcset) == dict, 'annotation file format {} not supported'.format(type(prdcset))
        print('Done (t={:0.2f}s)'.format(time.time() - startTime))
    
        ann_Y0 = trthset['annotations']
        ann_Y1 = prdcset['annotations']
    
        for image in trthset['images']:
            imagepath = imageprefix+image['file_name']
            img = cv.imread(imagepath)
    
            src = np.zeros((768,768,3), np.uint8)
            src[:,:,:]=img[:,:,:]
            dst = np.zeros((768,768,3), np.uint8)
            dst[:,:,:]=img[:,:,:]
    
            masks = np.zeros((768, 768, 1), np.uint8)
            masks.fill(0)
            id0 = image['id']
    
            counts = 0
    
            contours = []
            for target in ann_Y0:
                if target['image_id']==id0:
                    counts += 1
                    j=0
                    X=[]
                    Y=[]
                    for seg in target['segmentation'][0]:
                        if j == 0:
                            x = float(seg)
                            X.append(x)
                        else:
                            y = float(seg)
                            Y.append(y)
                        j = 1-j
    
                    rr, cc = draw.polygon(Y, X)
                    draw.set_color(src, [rr, cc], [0, 0, 255], 0.4)
    
                    Point = np.zeros((len(Y), 2), dtype='int32')
                    Point [:, 0] = X[:]
                    Point [:, 1] = Y[:]
                    #print(Point)
                    cv.fillPoly(masks, np.array([Point],'int32'), 1)
            src[:, :, 0] = img[:, :, 0] #* 0.9 + masks[:, :, 0] * 0.1 * 255.0 / counts
            src[:, :, 1] = img[:, :, 1] #* 0.9 + masks[:, :, 0] * 0.1 * 255.0 / counts
            src[:, :, 2] = img[:, :, 2] * 0.2 + masks[:, :, 0] * 0.8 * 255.0 / counts
    
            mmcv.imshow(src,"Y",1)
    
            masks.fill(0)
            counts = 0
            for target in ann_Y1:
                if target['image_id']==id0:
                    counts += 1
                    CRLE    = target['segmentation']
                    #print(CRLE)
                    mask    = maskutil.decode(CRLE)
                    mask    = np.reshape(mask, (img.shape[1], img.shape[0], 1))
                    masks[:, :] = masks[:, :] + mask[:, :]
    
            dst[:, :, 0] = img[:, :, 0] * 0.2 + masks[:, :, 0] * 0.8 * 255.0/counts
            dst[:, :, 1] = img[:, :, 1] #* 0.5 + masks[:, :, 0] * 0.5 * 255.0/counts
            dst[:, :, 2] = src[:, :, 2] * 0.9 + masks[:, :, 0] * 0.1 * 255.0/counts
            mmcv.imshow(dst,"Y'")
    
    
        return 0
    
    if __name__ == '__main__':
        main()
  • 相关阅读:
    MySQL事务_transaction
    mysql
    反射跳过泛型检查
    spring java.io.FileNotFoundException cannot be opened because it does not exist
    Servlet中ServletConfig的作用
    Exception in thread "main" java.lang.ClassCastException: java.base/java.util.HashMap$Values cannot be cast to java.base/java.util.ArrayList
    java中字符串和其他数据类型之间使用“+”号连接
    comboBox加载数据
    自动填充
    3号随笔,搭建web环境
  • 原文地址:https://www.cnblogs.com/aimhabo/p/9949276.html
Copyright © 2011-2022 走看看