Triangle LOVE
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 2478 Accepted Submission(s): 1011
Problem Description
Recently, scientists find that there is love between any of two people. For example, between A and B, if A don’t love B, then B must love A, vice versa. And there is no possibility that two people love each other, what a crazy world!
Now, scientists want to know whether or not there is a “Triangle Love” among N people. “Triangle Love” means that among any three people (A,B and C) , A loves B, B loves C and C loves A.
Your problem is writing a program to read the relationship among N people firstly, and return whether or not there is a “Triangle Love”.
Now, scientists want to know whether or not there is a “Triangle Love” among N people. “Triangle Love” means that among any three people (A,B and C) , A loves B, B loves C and C loves A.
Your problem is writing a program to read the relationship among N people firstly, and return whether or not there is a “Triangle Love”.
Input
The first line contains a single integer t (1 <= t <= 15), the number of test cases.
For each case, the first line contains one integer N (0 < N <= 2000).
In the next N lines contain the adjacency matrix A of the relationship (without spaces). Ai,j = 1 means i-th people loves j-th people, otherwise Ai,j = 0.
It is guaranteed that the given relationship is a tournament, that is, Ai,i= 0, Ai,j ≠ Aj,i(1<=i, j<=n,i≠j).
For each case, the first line contains one integer N (0 < N <= 2000).
In the next N lines contain the adjacency matrix A of the relationship (without spaces). Ai,j = 1 means i-th people loves j-th people, otherwise Ai,j = 0.
It is guaranteed that the given relationship is a tournament, that is, Ai,i= 0, Ai,j ≠ Aj,i(1<=i, j<=n,i≠j).
Output
For each case, output the case number as shown and then print “Yes”, if there is a “Triangle Love” among these N people, otherwise print “No”.
Take the sample output for more details.
Take the sample output for more details.
Sample Input
2
5
00100
10000
01001
11101
11000
5
01111
00000
01000
01100
01110
Sample Output
Case #1: Yes
Case #2: No
对于两个任何两个点都会有一条边将他们相连(Ai,j ≠ Aj,i)
假设目前有一个环大于3,其中有相连的三个点A,B,C,即 A->B,B->C
如果C->A 有一条边,就形成了一个3环
如果C->A 没有边,那么一定有 A->C,从而形成一个n-1环,以这种方式一定可以形成一个3环
所以只要判断这些点构成一个环即可
1 #include<string> 2 #include<cstdio> 3 #include<iostream> 4 #include<vector> 5 #include<queue> 6 #include<stack> 7 #include<algorithm> 8 #include<cstring> 9 #include<stdlib.h> 10 #include<string> 11 #include<cmath> 12 using namespace std; 13 #define pb push_back 14 vector<int >p[10010]; 15 int in[10010],n,m,deep[10010],num[10010]; 16 char dp[2010][2010]; 17 void init(){ 18 memset(in,0,sizeof(in)); 19 memset(deep,0,sizeof(deep)); 20 memset(num,0,sizeof(num)); 21 for(int i=0;i<=n;i++) p[i].clear(); 22 } 23 int tuopu(){ 24 queue<int >ak_47; 25 int cnt=0; 26 for(int i=1;i<n;i++) 27 if(in[i]==0) ak_47.push(i),deep[i]=1,num[1]++; 28 while(!ak_47.empty()){ 29 int pos=ak_47.front(); 30 cnt++; 31 for(int i=0;i<p[pos].size();i++){ 32 int to=p[pos][i]; 33 if(--in[to]==0) ak_47.push(to),deep[to]=deep[pos]+1,num[deep[to] ]++; 34 } 35 ak_47.pop(); 36 } 37 if(cnt<n) return 1; 38 else return 0; 39 40 } 41 int main(){ 42 int cas=0,t; 43 cin>>t; 44 while(t--){ 45 cin>>n; 46 init(); 47 for(int i=1;i<=n;i++){ 48 scanf("%s",dp[i]); 49 for(int j=0;j<n;j++) 50 if(dp[i][j]=='1') in[j+1]++,p[i].pb(j+1); 51 } 52 if(tuopu()) printf("Case #%d: Yes ",++cas); 53 else printf("Case #%d: No ",++cas); 54 } 55 }