zoukankan      html  css  js  c++  java
  • hdu 5134 Highway

    题意是:你当前距离高速公路D米,你在高速公路的行驶速度为v1,在其他地方行驶速度是v0  (v1>v0),然后问你在T秒能到达的区域的面积

    我们可以在高速公路上找到一点p,只考虑上半个平面(下半个是一样的),使得 从 now 到 p,然后在从 p 沿着高速公路向上走到达一个最远距离,可以用三分得到这个点

    而且此时 now -> p的时间会小于等于 now -> O + O ->p 证明如下:

     因为肯定存在一点ST,使得 now->ST 的时间等于 now->O + O->ST

    假设 p点在ST的上面,now->p 的时间会大于 now-ST + ST->p 的时间,所以走now - >ST +ST->p 的路径会更优,所以 p点一定在 O到ST 这段里面

    所以在从now 到  O到p  这一段中的点 p1,直接从now->p1所花费的时间会最少,然后在以p1为出发点所能到达的区域就是以 p1为圆心的圆,并且这个圆会与大圆相内切

    对于p点上面部分的点,以它们为圆心的圆 会形成一个三角形(证明略)

    所以我们的答案就是 ans = 大圆面积 + 2*三角形面积 - 2*三角形与圆的面积交

      1 //#include<bits/stdc++.h>
      2 #include<iostream>
      3 #include<cstdio>
      4 #include<cmath>
      5 #include<cstring>
      6 #include<vector>
      7 #include<algorithm>
      8 using namespace std;
      9 typedef long long LL;
     10 
     11 const double PI = acos(-1.0);
     12 const double EPS = 1e-7;
     13 
     14 inline int sgn(double x) {
     15     return (x > EPS) - (x < -EPS);
     16 }
     17 
     18 struct Point {
     19     double x, y;
     20     Point() {}
     21     Point(double x, double y): x(x), y(y) {}
     22     void read() {
     23         scanf("%lf%lf", &x, &y);
     24     }
     25     double angle() {
     26         return atan2(y, x);
     27     }
     28     Point operator + (const Point &rhs) const {
     29         return Point(x + rhs.x, y + rhs.y);
     30     }
     31     Point operator - (const Point &rhs) const {
     32         return Point(x - rhs.x, y - rhs.y);
     33     }
     34     Point operator * (double t) const {
     35         return Point(x * t, y * t);
     36     }
     37     Point operator / (double t) const {
     38         return Point(x / t, y / t);
     39     }
     40     double operator *(const Point &b)const
     41     {
     42         return x*b.x + y*b.y;
     43     }
     44     double length() const {
     45         return sqrt(x * x + y * y);
     46     }
     47     Point unit() const {            //单位向量
     48         double l = length();
     49         return Point(x / l, y / l);
     50     }
     51 };
     52 double cross(Point a,Point b) {
     53     return a.x * b.y - a.y * b.x;
     54 }
     55 double cross(Point a,Point b,Point c){
     56     return (a.x-c.x)*(b.y-c.y)-(a.y-c.y)*(b.x-c.x);
     57 }
     58 double xml(Point a,Point b,Point c){
     59     return (a.x-c.x)*(b.x-c.x)+(a.y-c.y)*(b.y-c.y);
     60 }
     61 double sqr(double x) {
     62     return x * x;
     63 }
     64 double dist(const Point &p1, const Point &p2) {
     65     return (p1 - p2).length();
     66 }
     67 double sdist(Point a,Point b){
     68     return (a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y);
     69 }
     70 //向量 op 逆时针旋转 angle
     71 Point rotate(const Point &p, double angle, const Point &o = Point(0, 0)) {
     72     Point t = p - o;
     73     double x = t.x * cos(angle) - t.y * sin(angle);
     74     double y = t.y * cos(angle) + t.x * sin(angle);
     75     return Point(x, y) + o;
     76 }
     77 Point line_inter(Point A,Point B,Point C,Point D){ //直线相交交点
     78         Point ans;
     79         double a1=A.y-B.y;
     80         double b1=B.x-A.x;
     81         double c1=A.x*B.y-B.x*A.y;
     82 
     83         double a2=C.y-D.y;
     84         double b2=D.x-C.x;
     85         double c2=C.x*D.y-D.x*C.y;
     86 
     87         ans.x=(b1*c2-b2*c1)/(a1*b2-a2*b1);
     88         ans.y=(a2*c1-a1*c2)/(a1*b2-a2*b1);
     89         return ans;
     90 }
     91 Point p_to_seg(Point p,Point a,Point b){        //点到线段的最近点
     92     Point tmp=p;
     93     tmp.x+=a.y-b.y;
     94     tmp.y+=b.x-a.x;
     95     if(cross(a-p,tmp-p)*cross(b-p,tmp-p)>0) return dist(p,a)<dist(p,b)?a:b;
     96     return line_inter(p,tmp,a,b);
     97 }
     98 void line_circle(Point c,double r,Point a,Point b,Point &p1,Point &p2){
     99     Point tmp=c;
    100     double t;
    101     tmp.x+=(a.y-b.y);//求垂直于ab的直线
    102     tmp.y+=(b.x-a.x);
    103     tmp=line_inter(tmp,c,a,b);
    104     t=sqrt(sqr(r)-sqr( dist(c,tmp)))/dist(a,b); //比例
    105     p1.x=tmp.x+(b.x-a.x)*t;
    106     p1.y=tmp.y+(b.y-a.y)*t;
    107     p2.x=tmp.x-(b.x-a.x)*t;
    108     p2.y=tmp.y-(b.y-a.y)*t;
    109 }
    110 struct Region {
    111     double st, ed;
    112     Region() {}
    113     Region(double st, double ed): st(st), ed(ed) {}
    114     bool operator < (const Region &rhs) const {
    115         if(sgn(st - rhs.st)) return st < rhs.st;
    116         return ed < rhs.ed;
    117     }
    118 };
    119 struct Circle {
    120     Point c;
    121     double r;
    122     vector<Region> reg;
    123     Circle() {}
    124     Circle(Point c, double r): c(c), r(r) {}
    125     void read() {
    126         c.read();
    127         scanf("%lf", &r);
    128     }
    129     void add(const Region &r) {
    130         reg.push_back(r);
    131     }
    132     bool contain(const Circle &cir) const {
    133         return sgn(dist(cir.c, c) + cir.r - r) <= 0;
    134     }
    135     bool intersect(const Circle &cir) const {
    136         return sgn(dist(cir.c, c) - cir.r - r) < 0;
    137     }
    138 };
    139 void intersection(const Circle &cir1, const Circle &cir2, Point &p1, Point &p2) {   //两圆相交 交点
    140     double l = dist(cir1.c, cir2.c);                            //两圆心的距离
    141     double d = (sqr(l) - sqr(cir2.r) + sqr(cir1.r)) / (2 * l);  //cir1圆心到交点直线的距离
    142     double d2 = sqrt(sqr(cir1.r) - sqr(d));                     //交点到 两圆心所在直线的距离
    143     Point mid = cir1.c + (cir2.c - cir1.c).unit() * d;
    144     Point v = rotate(cir2.c - cir1.c, PI / 2).unit() * d2;
    145     p1 = mid + v, p2 = mid - v;
    146 }
    147 Point calc(const Circle &cir, double angle) {
    148     Point p = Point(cir.c.x + cir.r, cir.c.y);
    149     return rotate(p, angle, cir.c);
    150 }
    151 const int MAXN = 1010;
    152 Circle cir[MAXN],cir2[MAXN];
    153 bool del[MAXN];
    154 int n;
    155 double get_area(Circle* cir,int n) {            //多个圆的相交面积
    156     double ans = 0;
    157     memset(del,0,sizeof(del));
    158     for(int i = 0; i < n; ++i) {
    159         for(int j = 0; j < n; ++j) if(!del[j]) {                //删除被包含的圆
    160             if(i == j) continue;
    161             if(cir[j].contain(cir[i])) {
    162                 del[i] = true;
    163                 break;
    164             }
    165         }
    166     }
    167     for(int i = 0; i < n; ++i) if(!del[i]) {
    168         Circle &mc = cir[i];
    169         Point p1, p2;
    170         bool flag = false;
    171         for(int j = 0; j < n; ++j) if(!del[j]) {
    172             if(i == j) continue;
    173             if(!mc.intersect(cir[j])) continue;
    174             flag = true;
    175             intersection(mc, cir[j], p1, p2);                   //求出两圆的交点
    176             double rs = (p2 - mc.c).angle(), rt = (p1 - mc.c).angle();
    177             if(sgn(rs) < 0) rs += 2 * PI;
    178             if(sgn(rt) < 0) rt += 2 * PI;
    179             if(sgn(rs - rt) > 0) mc.add(Region(rs, PI * 2)), mc.add(Region(0, rt)); //添加相交区域
    180             else mc.add(Region(rs, rt));
    181         }
    182         if(!flag) {
    183             ans += PI * sqr(mc.r);
    184             continue;
    185         }
    186         sort(mc.reg.begin(), mc.reg.end());                 //对相交区域进行排序
    187         int cnt = 1;
    188         for(int j = 1; j < int(mc.reg.size()); ++j) {
    189             if(sgn(mc.reg[cnt - 1].ed - mc.reg[j].st) >= 0) {   //如果有区域可以合并,则合并
    190                 mc.reg[cnt - 1].ed = max(mc.reg[cnt - 1].ed, mc.reg[j].ed);
    191             } else mc.reg[cnt++] = mc.reg[j];
    192         }
    193         mc.add(Region());
    194         mc.reg[cnt] = mc.reg[0];
    195         for(int j = 0; j < cnt; ++j) {
    196             p1 = calc(mc, mc.reg[j].ed);
    197             p2 = calc(mc, mc.reg[j + 1].st);
    198             ans += cross(p1, p2) / 2;                           //
    199             double angle = mc.reg[j + 1].st - mc.reg[j].ed;
    200             if(sgn(angle) < 0) angle += 2 * PI;
    201             ans += 0.5 * sqr(mc.r) * (angle - sin(angle));      //弧所对应的的面积
    202         }
    203     }
    204     return ans;
    205 }
    206 double two_cir(Circle t1,Circle t2){            //两个圆的相交面积
    207     if(t1.contain(t2)||t2.contain(t1))    return PI * sqr(min(t2.r,t1.r));
    208     if(!t1.intersect(t2)) return 0;
    209     double ans=0,len=dist(t1.c,t2.c);
    210     double x=(sqr(t1.r)+sqr(len)-sqr(t2.r))/(2*len);
    211     double angle1=acos(x/t1.r),angle2=acos((len-x)/t2.r);
    212     ans=sqr(t1.r)*angle1+sqr(t2.r)*angle2-len*t1.r*sin(angle1);    // 两个扇形 减去一个四边形面积
    213     return ans;
    214 }
    215 double EP=0;
    216 double triangle_circle(Point a,Point b,Point c,double r){//三角形与圆交
    217     double A,B,C,x,y,tS;
    218     A=dist(b,c);
    219     B=dist(a,c);
    220     C=dist(b,a);
    221     if(A<r&&B<r)
    222     return cross(a,b,c)/2;
    223     else if(A<r&&B>=r){
    224         x=(xml(a,c,b)+sqrt(r*r*C*C-cross(a,c,b)*cross(a,c,b)))/C;
    225         tS=cross(a,b,c)/2;
    226         return asin(tS*(1-x/C)*2/r/B*(1-EP))*r*r/2+tS*x/C;
    227     }
    228     else if(A>=r&&B<r){
    229         y=(xml(b,c,a)+sqrt(r*r*C*C-cross(b,c,a)*cross(b,c,a)))/C;
    230         tS=cross(a,b,c)/2;
    231         return asin(tS*(1-y/C)*2/r/A*(1-EP))*r*r/2+tS*y/C;
    232     }
    233     else if(fabs(cross(a,b,c))>=r*C||xml(b,c,a)<=0||xml(a,c,b)<=0){
    234         if(xml(a,b,c)<0)
    235             if(cross(a,b,c)<0)
    236                 return (-acos(-1.0)-asin(cross(a,b,c)/A/B*(1-EP)))*r*r/2;
    237             else return (acos(-1.0)-asin(cross(a,b,c)/A/B*(1-EP)))*r*r/2;
    238         else return asin(cross(a,b,c)/A/B*(1-EP))*r*r/2;
    239     }
    240     else{
    241         x=(xml(a,c,b)+sqrt(r*r*C*C-cross(a,c,b)*cross(a,c,b)))/C;
    242         y=(xml(b,c,a)+sqrt(r*r*C*C-cross(b,c,a)*cross(b,c,a)))/C;
    243         tS=cross(a,b,c)/2;
    244         return (asin(tS*(1-x/C)*2/r/B*(1-EP))+asin(tS*(1-y/C)*2/r/A*(1-EP)))*r*r/2+tS*((y+x)/C-1);
    245     }
    246 }
    247 Point pt1[5100],cter;
    248 double r;
    249 Point three_P_mincover(Point a,Point b,Point c){ //三角形的外接圆
    250     Point ret;
    251     double a1=b.x-a.x,b1=b.y-a.y,c1=(a1*a1+b1*b1)/2;
    252     double a2=c.x-a.x,b2=c.y-a.y,c2=(a2*a2+b2*b2)/2;
    253     double d=a1*b2-a2*b1;
    254     ret.x=a.x+(c1*b2-c2*b1)/d;
    255     ret.y=a.y+(a1*c2-a2*c1)/d;
    256     return ret;
    257 }
    258 void min_circle_cover(){                //点的最小覆盖
    259     random_shuffle(pt1,pt1+n);
    260      cter=pt1[0];
    261      r=0;
    262      for(int i=1;i<n;i++){
    263         if(dist(cter,pt1[i])-r>EPS){
    264             cter=pt1[i];
    265             r=0;
    266             for(int j=0;j<i;j++){
    267                 if(dist(cter,pt1[j])-r>EPS){
    268                     cter=(pt1[i]+pt1[j])/2.0;
    269                     r=dist(cter,pt1[i]);
    270                     for(int k=0;k<j;k++){
    271                         if(dist(cter,pt1[k])-r>EPS){
    272                             cter=three_P_mincover(pt1[i],pt1[j],pt1[k]);
    273                             r=dist(cter,pt1[i]);
    274                         }
    275                     }
    276                 }
    277             }
    278         }
    279      }
    280 }
    281 int main(){
    282     #ifndef ONLINE_JUDGE
    283     freopen("input.txt","r",stdin);
    284     #endif // ONLINE_JUDGE
    285     double v0,v1,D,T;
    286     int cas=0;
    287     Point cter;
    288     while(scanf("%lf%lf%lf%lf",&v0,&v1,&D,&T)!=EOF){
    289         double p_t,l=D/v0,r=T,mid,mmid;
    290         cter=Point(-D,0);
    291         if(D>=v0*T){
    292             printf("Case %d: %.8f
    ",++cas,PI*v0*v0*T*T);
    293             continue;
    294         }
    295         for(int i=0;i<100;i++){
    296             mid=(l+r)/2;
    297             mmid=(r+mid)/2;
    298             double len1,len2;
    299             len1=sqrt(v0*mid*v0*mid-D*D)+v1*(T-mid);
    300             len2=sqrt(v0*mmid*v0*mmid-D*D)+v1*(T-mmid);
    301             if(len1>len2) r=mmid;
    302             else l=mid;
    303         }
    304         p_t=(l+r)/2;
    305         double x1,y1,y;
    306         x1=T/p_t*D-D;
    307         y1=sqrt(v0*T*v0*T-(x1+D)*(x1+D));
    308         y=sqrt(v0*p_t*v0*p_t-D*D)+v1*(T-p_t);
    309         double ans=0,tmp=0;
    310         Point a,b,c;
    311         a=Point(x1,y1);
    312         b=Point(0,y);
    313         c=Point(-x1,y1);
    314         tmp+=triangle_circle(a,b,cter,v0*T);
    315         tmp+=triangle_circle(b,c,cter,v0*T);
    316         tmp+=triangle_circle(c,a,cter,v0*T);
    317         tmp=fabs(tmp);
    318         ans=PI*v0*v0*T*T+cross(a-c,b-c);
    319         ans-=tmp*2;
    320         printf("Case %d: %.8f
    ",++cas,ans);
    321     }
    322 }
  • 相关阅读:
    超线程、多核、多处理器
    视图
    面试题27:连续子数组的最大和
    Java实现 蓝桥杯油漆问题
    Java实现 蓝桥杯油漆问题
    Java实现 蓝桥杯油漆问题
    Java实现 蓝桥杯油漆问题
    Java实现第七届蓝桥杯国赛 赢球票
    Java实现第七届蓝桥杯国赛 赢球票
    Java实现第七届蓝桥杯国赛 赢球票
  • 原文地址:https://www.cnblogs.com/ainixu1314/p/4713404.html
Copyright © 2011-2022 走看看