zoukankan      html  css  js  c++  java
  • [LeetCode#216]Combination Sum III

    Problem:

    Find all possible combinations of k numbers that add up to a number n, given that only numbers from 1 to 9 can be used and each combination should be a unique set of numbers.

    Ensure that numbers within the set are sorted in ascending order.


    Example 1:

    Input:  k = 3,  n = 7

    Output: 

    [[1,2,4]]
    

    Example 2:

    Input:  k = 3,  n = 9

    Output: 

    [[1,2,6], [1,3,5], [2,3,4]]

    Analysis:

    This problem is similar with other combination problems. Actually it is more easy, since the element comes from the range[1, 9]
    The problem requires the solution must contain certain amount of numbers. 
    
    The same as the past routine, we use DFS to search for the right answer. For the wrong direction, we should be able to backtrack to its previous state.
    
    Base case:
    1. find out right answer.
    The target is just 0, which means its previos state has found out the answer(the state information recored in path).
    What's more, the path.size() must exactly equal to k. no k - 1 or k+1
    
    if (n == 0 && path.size() == k) {
        ret.add(new ArrayList<Integer> (path));
        return;
    }
    
    2. violation cases.
    2.a the last state exceeds the target
    2.b the start index exceeds the maximum index 9
    2.c the path.size exceeds k.
    
    if (n < 0 || start > 9 || path.size() >= k)
        return;
    
    Actually path.size() >= k could be writeen into path.size() == k
    Since the curent path has already included k elemennts, but it does not meet the previous checking:
    if (n == 0 && path.size() == k) {
    ...
    }
    We could stop the search along this direction when path.size() == k. 

    Solution:

    public class Solution {
        public List<List<Integer>> combinationSum3(int k, int n) {
            List<List<Integer>> ret = new ArrayList<List<Integer>> ();
            if (k <= 0 || n <= 0)
                return ret;
            ArrayList<Integer> path = new ArrayList<Integer> ();
            helper(1, k, n, path, ret);
            return ret;
        }
        
        private void helper(int start, int k, int n, ArrayList<Integer> path, List<List<Integer>> ret) {
            if (n == 0 && path.size() == k) {
                ret.add(new ArrayList<Integer> (path));
                return;
            }
            //chop off branches is very important
            if (n < 0 || start > 9 || path.size() == k)
                return;
            for (int i = start; i <= 9; i++) {
                path.add(i);
                helper(i+1, k, n-i, path, ret);
                path.remove(path.size()-1);
            }
        }
    }
    
    
  • 相关阅读:
    POJ 1061 青蛙的约会(扩展欧几里得)
    贝祖定理(裴蜀定理)
    C语言 gets()和scanf()函数的区别
    非递归方式遍历二叉树
    zip包的解压
    八大基础排序中(直接插入排序,希尔排序,冒泡排序, 快速排序,归并排序,简单选择排序)
    数字反序与数字的和
    合并两个有序数组,合并后数组仍有序
    使用递归方式和非递归方式求斐波那契数
    求100到999之内的水仙花数
  • 原文地址:https://www.cnblogs.com/airwindow/p/4749415.html
Copyright © 2011-2022 走看看