zoukankan      html  css  js  c++  java
  • [LeetCode#29]Divide Two Integers

    Problem:

    Divide two integers without using multiplication, division and mod operator.

    If it is overflow, return MAX_INT.

    Analysis:

    The question is not hard!!! The idea behind this problem is simple, the divident conisited of multi times of divisor.
    dividend = divisor * (2 ^ 0) * a0 + divisor * (2 ^ 1) * a1 + divisor * (2 ^ 2) * a2 + ...
    What we need to compute is a0 ... aN. 
    Note : a << 1 is euqal to a * 2 rather than a ^ 2. (Very important!)
    
    Following the above idea, we could begin to dissect dividend with divisor, but the implementation of this problem involves many skill you should master. 
    1. Since we only care about the how many abs(divisor) needed for abs(dividend), we should covert both integers into to positive first. And use abs should be very careful, since dividend or divisor could be Integer.MIN_VALUE. The method is to covert the Integer into long before use any Math.abs() operation.
    long p_dividend = Math.abs((long)dividend);
    long p_divisor = Math.abs((long)divisor);
    
    Note: (long)dividend is necessary. 
    
    
    2. Use shift operation to improve divisor until the divisor just surpass dividend. 
    int left_move = 0;
    while (p_dividend >= (p_divisor << left_move)) {
        left_move++;
    }
    Note: (p_divisor << left_move) is (1 << left_move) times of p_divisor. 
    Thus, we could get the attribute.
    ret += 1 << (left_move-1); //note, we just surpass divisor, thus left_move need minus 1.
    p_dividend -= (p_divisor << left_move-1); // we need to minus the part that has already been recorded in ret.
    
    
    Note: 
    For overflow situation, we need to return Integer.MAX_VALUE. There is only one overflow situation, we could separte it out.
    if (dividend == Integer.MIN_VALUE && divisor == -1)
        return Integer.MAX_VALUE;

    Solution:

    public class Solution {
        public int divide(int dividend, int divisor) {
            if (divisor == 0) 
                return Integer.MAX_VALUE;
            if (dividend == Integer.MIN_VALUE && divisor == -1)
                return Integer.MAX_VALUE;
            long p_dividend = Math.abs((long)dividend);
            long p_divisor = Math.abs((long)divisor);
            int ret = 0;
            while (p_dividend >= p_divisor) {
                int left_move = 0;
                while (p_dividend >= (p_divisor << left_move)) {
                    left_move++;
                }
                ret += 1 << (left_move-1);
                p_dividend -= (p_divisor << left_move-1);
            }
            if ((dividend < 0 && divisor < 0) || (dividend > 0 && divisor > 0))
                return ret;
            else
                return -1 * ret;
        }
    }
  • 相关阅读:
    用栈实现队列
    “非常规”的漏洞挖掘思路与技巧-请求参数加密,js接口- 漏洞定级评分的标准与关注点-违规测试标准详解
    【linux 文件管理】2-文件目录命令
    EHC
    kali linux高级渗透测试第七课
    maltego CE社区版-Domain与DNS name
    name servers-域名服务器
    【linux 文件管理】1-文件目录结构
    web应用安全自学指南
    kali linux高级渗透测试第六课
  • 原文地址:https://www.cnblogs.com/airwindow/p/4784813.html
Copyright © 2011-2022 走看看