zoukankan      html  css  js  c++  java
  • Flume整合Kafka完成实时数据采集

    agent选择

    agent1 exec source + memory channel + avro sink

    agent2 avro source + memory channel 

    模拟实际工作中的场景,agent1 为A机器,agent2 为B机器。

    avro source: 监听avro端口,并且接收来自外部avro信息,

    avro sink:一般用于跨节点传输,主要绑定数据移动目的地的ip和port

     

     

    在创建agent2配置文件

    cd /app/flume/flume/conf

    vi test-avro-memory-kafka.conf

    avro-memory-kafka.sources = avro-source
    avro-memory-kafka.sinks = kafka-sink
    avro-memory-kafka.channels = memory-channel
     
    avro-memory-kafka.sources.avro-source.type = avro
    avro-memory-kafka.sources.avro-source.bind= dblab-VirtualBox
    avro-memory-kafka.sources.avro-source.port=44444
     
    avro-memory-kafka.sinks.kafka-sink.type = org.apache.flume.sink.kafka.KafkaSink
    avro-memory-kafka.sinks.kafka-sink.kafka.bootstrap.servers = dblab-VirtualBox:9092
    avro-memory-kafka.sinks.kafka-sink.kafka.topic = hello_topic
    avro-memory-kafka.sinks.kafka-sink.batchSize = 5
    avro-memory-kafka.sinks.kafka-sink.requiredAcks = 1 
    
    avro-memory-kafka.channels.memory-channel.type = memory
     
    avro-memory-kafka.sources.avro-source.channels = memory-channel
    avro-memory-kafka.sinks.kafka-sink.channel = memory-channel

    启动agent2

    flume-ng agent --name avro-memory-kafka -c conf -f conf/test-avro-memory-kafka.conf -Dflume.root.logger=INFO,console

    这里一定要等agent2的avro-source启动成功,已经监听了自己的44444端口,才能去启动agent1,不然agent1启动会被拒绝连接

     

    创建agent1配置文件

    cd /app/flume/flume/conf

    vi test-exec-memory-avro.conf

    exec-memory-avro.sources = exec-source
    exec-memory-avro.sinks = avro-sink
    exec-memory-avro.channels = memory-channel
    
    exec-memory-avro.sources.exec-source.type = exec
    exec-memory-avro.sources.exec-source.command = tail -F /home/hadoop/data/data.log
    exec-memory-avro.sources.exec-source.shell = /bin/sh -c
    
    exec-memory-avro.sinks.avro-sink.type = avro
    exec-memory-avro.sinks.avro-sink.hostname = dblab-VirtualBox
    exec-memory-avro.sinks.avro-sink.port = 44444
    
    exec-memory-avro.channels.memory-channel.type = memory
    
    exec-memory-avro.sources.exec-source.channels = memory-channel
    exec-memory-avro.sinks.avro-sink.channel = memory-channel

     

    启动agent2

    flume-ng agent --name exec-memory-avro -c conf -f conf/test-exec-memory-avro.conf -Dflume.root.logger=INFO,console

    接下来对Kafka进行配置

    先启动Kafka

    $ kafka-server-start.sh $KAFKA_HOME/config/server.properties

    创建hello_topic

    $ kafka-topics.sh --create --zookeeper localhost:2181 --replication-factor 1 --partitions 1 --topic test

     启动生产者

    kafka-console-producer.sh --broker-list localhost:9092 --topic hello_topic

    启动一个Kafka的客户端来消费,测试是否启动成功

    kafka-console-consumer.sh --zookeeper localhost:2181 --topic hello_topic

    向agent1的exec-source监听的文件中写数据

    查看Kafka的客户端是否通过flume消费到数据

    至此完成Flume整合Kafka完成实时数据采集

  • 相关阅读:
    MS SQL Server2012中的TRY_CONVERT函数
    MS SQL Server2012中的CONCAT函数
    查询数据库大小
    显示数据与存储方式
    Windows 8 安装之后怎样更改产品码
    IIS SubStatus Codes
    MS SQL Server Quarter Function
    程序中处理一对多的数据
    找出字符串中所有数字
    BOOTMGR is missing
  • 原文地址:https://www.cnblogs.com/aishanyishi/p/10326042.html
Copyright © 2011-2022 走看看