题目如下:
The task is really simple: given N exits on a highway which forms a simple cycle, you are supposed to tell the shortest distance between any pair of exits.
Input Specification:
Each input file contains one test case. For each case, the first line contains an integer N (in [3, 105]), followed by N integer distances D1 D2 ... DN, where Di is the distance between the i-th and the (i+1)-st exits, and DN is between the N-th and the 1st exits. All the numbers in a line are separated by a space. The second line gives a positive integer M (<=104), with M lines follow, each contains a pair of exit numbers, provided that the exits are numbered from 1 to N. It is guaranteed that the total round trip distance is no more than 107.
Output Specification:
For each test case, print your results in M lines, each contains the shortest distance between the corresponding given pair of exits.
Sample Input:5 1 2 4 14 9 3 1 3 2 5 4 1Sample Output:
3 10 7
题目要求找出简单环路(类似表盘)中指定两点的最短距离,实质就是找出顺时针和逆时针两种路径中较小的,由于题目给出的数组规模比较庞大,因此不能简单的计算顺时针和逆时针的距离之和然后比较输出,而应当仔细思考问题的规律,试图不经过环的遍历就找到答案。
首先,我们可以在输入时累计相邻点的距离,得到环的总长sum,从而只需要计算一个方向的距离,另一个方向一减便知。
其次,我们可以再用一个数组或vector记录从起点1顺时针走到当前结点的距离,在输入时就可以得到。
最后,有了这两个量,我们可以用较大结end点到1的距离减去较小结点start到1的距离,从而得到start到end的顺时针距离,逆时针距离就等于sum-顺时针距离,从而在不遍历环的情况下得到两个距离,这样才能避免最后一个测试点超时。
通过这个题目,我反思到对于简单的题目并不能掉以轻心,应当力图寻求事物的规律来替代繁琐的过程。
#include <iostream> #include <vector> #include <stdio.h> #include <math.h> using namespace std; vector<int> dis; vector<int> disToOrigin; int sum = 0; int computeMinDis(int s, int e){ int minDist1 = 0,minDist2 = 0; int start, end; if(s < e) { start = s; end = e; } else if( s == e ) return 0; else { start = e; end = s; } minDist1 = disToOrigin[end] - disToOrigin[start]; minDist2 = sum - minDist1; return minDist1 < minDist2 ? minDist1 : minDist2; } int main() { int N,M; cin >> N; dis.resize(N+1); disToOrigin.resize(N+1); disToOrigin[1] = 0; int value; for(int i = 1; i <= N; i++){ scanf("%d",&value); dis[i] = value; if(i > 1) disToOrigin[i] = sum; sum += value; } cin >> M; int x,y; for(int i = 0; i < M; i++){ scanf("%d%d",&x,&y); printf("%d ",computeMinDis(x,y)); } return 0; }