Heap Sort Algorithm
heap-sort uses max heap data structure to sort a sequence. The steps are:
-
We need construct a max heap in place firstly, so that we can make sure that the bigest value locates on the first position of the heap.
-
Swap the top value with the last value of the sequence, and shrink the size to nSize-1, and reconstruct the max heap.
-
Swap loopsly and the sequence will be sorted.
The key issue is how to present a max heap data structure by an array.
- #define LEFT_CHILD_INDEX(idx) (idx*2 + 1)
- #define RIGHT_CHILD_INDEX(idx) (idx*2 + 2)
- #define PARENT_INDEX(idx) (idx-1)/2
- /*
- Given a max-heap, if we changed a value at idx, we should make sure
- that all its children are not bigger than it.
- */
- void max_heapify( const int idx, int arr[], const int nSize )
- {
- int nCur = idx;
- int nLeft = LEFT_CHILD_INDEX(nCur);
- int nRight = RIGHT_CHILD_INDEX(nCur);
- if( nRight < nSize-1 )
- {
- if( arr[nCur] < arr[nRight] )
- {
- std::swap( arr[nCur], arr[nRight] );
- max_heapify(nRight, arr, nSize);
- }
- }
- if( nLeft < nSize-1 )
- {
- if( arr[nCur] < arr[nLeft] )
- {
- std::swap( arr[nCur], arr[nLeft] );
- max_heapify(nLeft, arr, nSize);
- }
- }
- }
- /*
- a non complete binary tree has (nSize+1)/2 children
- */
- void build_max_heap(int arr[], const int nSize)
- {
- int nCount = nSize - (nSize+1)/2;
- for(int i=0; i<nCount; ++i)
- {
- max_heapify(i, arr, nSize);
- }
- }
- /*
- Build a max heap firstly, so the first one is the biggest one
- Swap with the last one, rebuild the max heap, but ignoring the last one
- */
- void SortHeap::sort(int arr[], const int nSize)
- {
- ALog::print(_T("# Heap Sort: "));
- ALog::print(arr, nSize);
- build_max_heap(arr, nSize);
- ALog::print(arr, nSize);
- for( int i=nSize-1; i>1; --i )
- {
- std::swap(arr[0],arr[i]);
- max_heapify(0, arr, i);
- ALog::print(arr, nSize);
- }
- }
- void SortHeap::test()
- {
- int arr[] = { 2, 9, 3, 7, 8, 6, 4, 5, 0, 1};
- const int nSize = sizeof(arr)/sizeof(int);
- SortHeap::sort(arr, nSize);
- }
The test result:
# Heap Sort:
2 9 3 7 8 6 4 5 0 1
================
9 8 6 7 3 4 2 5 0 1
8 7 4 6 3 2 1 5 0 9
7 6 2 4 3 1 0 5 8 9
6 5 2 4 3 1 0 7 8 9
5 4 0 3 2 1 6 7 8 9
4 3 0 1 2 5 6 7 8 9
3 2 0 1 4 5 6 7 8 9
2 1 0 3 4 5 6 7 8 9
0 1 2 3 4 5 6 7 8 9