zoukankan      html  css  js  c++  java
  • [题解] AGC038C

    我不明白这题为什么要莫比乌斯反演

    题意

    (sum_{i< j}operatorname{lcm}left(a_i,a_j ight)),且 (a_ile10^6)

    解答

    [egin{aligned} fleft(x ight)&=sum_{i=1}^nsum_{j=i+1}^{n}a_ia_jleft[x mid gcdleft(a_i,a_j ight) ight]\ &=sum_{i=1}^nsum_{j=i+1}^{n}left(a_ileft[xmid a_i ight] ight)left(a_jleft[xmid a_j ight] ight) \ &=dfrac{1}{2}cdotleft(left(sum_{xmid i}^{n}a_i ight)^2-sum_{xmid i}^{n}a_i^2 ight) \ gleft(x ight)&=sum_{i=1}^nsum_{j=i+1}^{n}a_ia_jleft[ gcdleft(a_i,a_j ight)=x ight] \ &=sum_{i=1}^nsum_{j=i+1}^{n}a_ia_jleft[x mid gcdleft(a_i,a_j ight) ight]-sum_{k>x,xmid k}^Asum_{i=1}^nsum_{j=i+1}^{n}a_ia_jleft[gcdleft(a_i,a_j ight)=k ight] \ &=fleft(x ight)-sum_{k>x,xmid k}^Agleft(k ight) end{aligned} ]

    则从小到大枚举 (x) 即可计算出所有的 (f)(g),时间复杂度为 (sum_{i=1}^Adfrac{A}{i}+mathcal{O}left(n ight)=mathcal{O}left(Aln A+n ight)),答案为

    [egin{aligned} sum_{i=1}^nsum_{j=i+1}^{n}operatorname{lcm}left(a_i,a_j ight)&=sum_{i=1}^nsum_{j=i+1}^{n}dfrac{a_ia_j}{gcdleft(a_i,a_j ight)}\ &=sum_{dge1}sum_{i=1}^nsum_{j=i+1}^{n}dfrac{a_ia_j}{d}left[gcdleft(a_i,a_j ight)=d ight]\ &=sum_{dge1}dfrac{gleft(x ight)}{d} end{aligned} ]

    代码

    #include <algorithm>
    using namespace std;
    typedef long long ll;
    constexpr int N=200010,K=1000010,p=998244353;
    int inv[K],sum[K],a[N],n,cnt[K];
    int main(){
        scanf("%d",&n);for(int i=1;i<=n;++i) scanf("%d",&a[i]),++cnt[a[i]];
        inv[1]=1;for(int i=2;i<K;++i) inv[i]=1ll*(p-p/i)*inv[p%i]%p;
        int ans=0;
        for(int i=K-1;i;--i){
            int s1=0,s2=0;
            for(int j=i;j<K;j+=i) s1=(s1+1ll*cnt[j]*j%p)%p,s2=(s2+1ll*cnt[j]*j%p*j%p)%p;
            sum[i]=1ll*(1ll*s1*s1%p-s2+p)*inv[2]%p;
            for(int j=(i<<1);j<K;j+=i) sum[i]=(sum[i]-sum[j]+p)%p;
            // if(i<10) printf("%d %d %d %d %d
    ",i,sum[i],s1,s2,inv[i]);
            ans=(ans+1ll*inv[i]*sum[i]%p)%p;
        }
        printf("%d
    ",ans);
        return 0;
    }
    
    
  • 相关阅读:
    webpack2.x抽取css
    window.print控制打印样式
    Vue2.x中的父子组件相互通信
    Vue2.x中的父组件数据传递至子组件
    NodeJs之fs的读写删移监
    设计
    mycat服务启动{管理模块启动过程}
    mycat初探
    zookeeper总结
    rocketmq总结
  • 原文地址:https://www.cnblogs.com/aixiaoyaowudi/p/15412447.html
Copyright © 2011-2022 走看看