zoukankan      html  css  js  c++  java
  • 802.11相关术语及其设计(一)

    802.11相关术语及其设计()

    1.1  网络组件

    802.11网络包含四种主要实体元件,如图 1-1 所示

     

            图 1-1:802.11 LAN 的组成元件

    这些组成元件包括:

    l  工作站(Station)

    l  接入点(Access Point )

    l  无线介质(Wireless medium)

    l  分布式系统(Distribution system)

    工作站(Station)

    配置网络的目的,是为了在工作站间传送数据。所谓的工作站(station ),是指配备无线网络接口的计算设备,即带有无线网卡的通信设备。通常,工作站是以电池供电的膝上型(laptop )或手持式(handheld)计算机。然而,工作站不见得就是携带型( portable )计算设备。有时候,使用无线网络之目的是为了省去拉线的麻烦,桌上型(desktop ) 电脑一样可以使用无线局域网络。

    接入点(Access Point

    802.11网络所使用的帧必须经过转换,方能被传递至其他不同类型的网络。具备无线至有线( wireless-to-wired) 桥接功能的设备称为接入点(access point,简称 AP);接入点的功能不仅于此,但桥接(bridging )最为重要。

    无线媒介(Wireless medium)

    802.11标准以无线媒介(Wireless medium)在工作站之间传递帧。其所定义的物理层不只一种;这种架构允许多种物理层同时支持 802.11 MAC - 802.11 最初标准化了两种射频( radio frequency ,简称 RF)物理层以及一种红外线(infrared )物理层,然而事后证明 RF物理层较受欢迎。

    分布式系统(Distribution system)

    当几个接入点串连以覆盖较大区域时,彼此之间必须相互通信,才能够掌握移动式工作站的行踪。而分布式系统(distribution system ) 属于802.11的逻辑元件,负责将帧(frame)转送至目的地。802.11并未规范分布式系统的技术细节。大多数商用产品,是以桥接引擎(bridging engine)和分布式系统媒介(distribution system medium)共同组成分布式系统。分布式系统是接入点间转送帧的骨干网络,通常就称为骨干网络(backbone network)。所有在商业上获得成功的产品,几乎都是以 Ethernet 为骨干网络。

    1.2   网络类型

    基本服务集(basic service set 简称BSS)是 802.11网络的基本元件(building block),由一组彼此通信的工作站所构成。工作站之间的通信,在某个模糊地带进行,称为基本服务区域 (basic service area) ,此区域受限于所使用无线媒介的传播特性。只要位于基本服务区域,工作站就可以跟同一个 BSS 的其他成员通信。BSS 分为两种,如图 1-2 所示。

     

          图 1-2:独立型与基础型基本服务组合

      1.2.1 独立型网络

    图左为独立式基本服务集(independent BSS ,简称IBSS)。在 IBSS中,工作站彼此可以直接通信,两者问的距离必须在可以直接通信的范围内。最低限度的 802.11网络,是由两部工作站所组成的 IBSS。通常,IBSS 是由少数几部工作站针对特定目的而组成的临时性网络。

    常见的情况是在会议室中支持个别会议之用。会议一开始,与会人员彼此会形成一个IBSS 以便传递数据。当会议结束,IBSS 随即瓦解。正因为持续时问不长、规模甚小且目的特殊, IBSS 有时被称为特设 BSS(ad hoc BSS)或特设网络(ad hoc network )。

     1.2.2 基础型网络

    图右为基础型基本服务组合(为了避免混淆,不可将 infrastructure BSS 简称为IBSS)。判断是否为基础型网络,只要检视是否有接入点参与其中。接入点负责基础型网络所有的传输,包括同一服务区域中所有行动节点之间的通信。位于基础型基本服务组合的移动式工作站,如有必要跟其他移动式工作站通信,必须经过两个步骤。首先,由开始对话的工作站将帧传递给接入点。其次,由接入点将此帧转送至目的地。既然所有通信都必须通过接入点,基础型网络所对应的基本服务区域就相当于接入点的传送范围。

    虽然这种做法比直接传送耗费较多的资源,不过它有两个主要的优点:

    1. 基础型基本服务集被界定在接入点的传输范围。所有移动式工作站都必须位于接入点的传输范围之内,不过移动式工作站之间的距离则无限制。允许移动式工作站彼此直接通信虽然可以省下一些频宽,不过代价是相对提高了物理层的复杂度,因为每部工作站都必须维护与服务区域中其他工作站的邻接关系。
    2. 接入点在基础型网络里的作用是协助工作站节省电力。接入点可以记住有哪些工作站处于省电状态,并且为之暂存帧,以电池供电的工作站可以关闭无线收发器,只有在传输或接收来自接入点的暂存帧时才会加以开启。

    在基础型网络里,工作站必须先与接入点建立连接,才能取得网络服务。所谓连接 (association),是指移动式工作站加入某个 802.11网络的程序。逻辑上,这相当于 Ethernet插上网线。整个过程并不对称,因为开始连接过程的必然是移动式工作站,对于移动式工作站而言,关联必须独一无二;每部移动式工作站同时问只能与一部接入点连接。802.11标准并未限制接入点可服务的移动式工作站数量。当然,实作上还是必须以限制。不过实际上,无线网络的传输量相对较低,很少需要予以限制。

     1.2.3 扩展服务区域

    BSS 的服务范围,可以涵盖整个小型办公室或家庭,不过无法服务较广的区域。802.11允许我们将几个 BSS 串联为扩展服务集(extended service set,简称ESS),借此扩展无线网络的覆盖区域。所谓 ESS 就是利用骨干网络将几个BSS串联在一起。所有位于同一个ESS 的接入点将会使用相同的服务集识别码(service set identifier,简称 SSID),通常就是使用者所谓的网络「名称」。

    802.11并未规范非得使用何种骨干技术,只要求骨干必须提供一组特定的服务功能。图1-3所示的ESS 是四个BSS 的联集(只要所有接入点均隶属同一个 ESS )。实际部署时,BSS 之间的重叠程度可能较图 1-3 更高。在实际生活中,总是希望扩展服务区域是连续的;不可能要求使用者从 BSSl走到BSS2 时还要绕道 BSS3。

    隶属同一个 ESS 的工作站可以相互通信,即使这些工作站位于不同的基本服务区域,或是在这些基本服务区域中移动。为了让 ESS 里的工作站能够彼此通信,无线媒介必须能够在第二层(链路层)进行连接。由于接入点扮演著桥接器的角色,因此 ESS 里的工作站若要彼此通信,则骨干网络也必须能够在第二层进行连接。

    扩展服务区域是 802.11网络所支持的最高价抽象概念。ESS 所属的接入点会彼此合作,让外界能够使用单一 MAC地址与 ESS 里其他工作站通信,不论其置身何处。在图 1-3 中,路由器可使用单一 MAC地址传递帧给移动式工作站;由该工作站所连接的接入点负责传送帧。路由器无须在意移动式工作站位于何处,而是靠接入点传送帧。

     

     

            图 1-3:扩展服务组合

    1.2.4 多组BSS 所构成的环境:虚拟AP

    举例而言,各机关单位总会有固定的访客,其中许多人手上就有 802.11设备,而且需要(或者强烈想要)与网际网络连接。这些访客并非可信的用户,通常为了满足这些访客的上网需求,将会在相同的实体设施上另辟两个扩展服务组合。目前的 802.11芯片组已经可以使用相同的物理层来建立多组网络。以当前的芯片组而言,每部接入点的硬件设备可以建立两组 BSS ,其中一组可供客户访问,称之为 guest,另外一组则供内部使用,称之为 internal 。在此 AP当中,各SSID被分别连接至不同的 VLAN  guest网络会被连接至为不知名或不可信用户所准备的 VLAN,而且被置于防火墙外。

    在无线电波领域内,无线设备将会发现两组不同的网络,然后依其所需连接至适合的网络。(当然,要访问内部网络必须经过身份认证,以防止未经授权人士使用)连接至guest 网络的使用者会被引导至访客所使用的 VLAN,而连接至 internal 网络的用户则必须经过身份认证,然后被引导至内部网络。

    上述所虚构的例子,说明了虚拟接入点的扩展情况。每个 BSS 就像一部自给自足的 AP,拥有自己的 ESSID 、MAC地址。身份认证配置以及加密设置。虚拟接入点也可以用来建立具不同安全等级(security level )的平行网络( parallel network )。目前, 802.11芯片组最多可以建立 32甚至 64组BSS ,对各种情况而言,应该都已经够用了。

     1.2.5 强健安全网络(Robust Security Network )

    早期无线局域网络内建的安全机制已被证明是不堪一击。2004年6 月成为标准的 802.11i,规范了一组经改良的安全机制,目的是提供坚固而安全的网络连接。一旦使用 802.11i所定义的、经改良的身份认证与私密性协议,就可称之为强健安全网络连接(robust security network associations,简称 RSNAs)。产品可以通过硬件、软件或软硬件兼具的方式支持 802.11i,这取决于该设备所使用的架构。不支持此协议的硬件被归类为 pre-RSN 。有些pre-RSN 设备可以通过升级的方式来支持802.11i。

    1.3   再论分布式系统

    既然读者已经了解如何建构扩展服务集,我打算回过头来重新理解分布式系统这个概念。802.11是以能提供无线工作站哪些服务来描述分布式系统。分布式系统可借由串连接入点来提供移动性(mobility)。当帧传送至分布式系统,随即会被送至正确的接入点,而后由接入点转送至目的地。

    分布式系统必须负责追踪工作站实际的位置,以及帧的传送。若要传送帧给某部移动式工作站,分布式系统必须负责将之传递给服务该移动式工作站的接入点。以图1-3 的路由器为例。该路由器仅会以某移动式工作站的 MAC为目的地址,如图 1-3 所示,ESS 的分布式系统必须负责将帧传递给正确的接入点。显然,有部分传递机制属于 Ethernet 所构成的骨干网络,不过该骨干网络并不代表整个分布式系统,因为它无法在多部接入点间做出选择。以 802.11的语言来讲,Ethernet 所构成的骨干网络是个「分布式系统媒介」,但并非分布式系统的全部。要找出分布式系统的其他成份,我们必须检视接入点本身。

    目前市面上大部分接入点都是扮演桥接器的角色。这些接入点至少具备一个无线网络界面,以及一个 Ethernet 界面。Ethernet 界面可用来连接既有的网络,而无线界面则成为该网络的延伸。这两种网络媒介之间的帧转送,是由「桥接引擎」加以控制。

     

            图 1-4:在一般 802.11 接入点中常见的分布式系统

    接入点、骨干网络以及分布式系统之间的关系如图 1-4 所示。接入点具备两种不同的界面,分别连接至同一个桥接引擎。图中的箭头代表往返桥接引擎的可能路径。帧将会通过桥接器送至无线网络;任何由桥接器的无线端口所送出的帧都会传给所有已连接的工作站。每部已连接的工作站均可传递帧至接入点。最后,桥接器的骨干端口可以直接与骨干网络互动。在图1-4 中,分布式系统是由桥接引擎及有线骨干网络所组成。

    在基础型网络里,移动式工作站所送出的每个帧都必须用到分布式系统。这并不难理解。毕竟,每部工作站都必须连接至分布式系统。无线工作站在基础型网络里必须依赖分布式系统才能彼此通信,因为它们无法直接连接。工作站 A 要传送帧给工作站 B 的惟一方式,是通过接入点里桥接引擎的转达(relay)。不过桥接器本身属于分布式系统的组成元件。虽然分布式系统所使用的是哪些组成元件似乎纯粹是技术上的考虑,但实际上 802.11 MAC 里某些功能与分布式系统有十分密切的关系。

     1.3.1 接入点间的通信是分布式系统的一部分

    分布式系统包含了管理关联的方式。一部无线工作站在同一时问只能与一部接入点关联。如果某工作站己经与某接入点关联,位于同一个 ESS 的其他接入点必须能够得知此工作站。如图 1-3 所示,AP4 必须得知所有与 AP1 关联的工作站。如果一部与 AP4 关联的无线工作站送出帧给一部与API 关联的工作站,AP4 的桥接引擎必须通过 Ethernet 所构成的骨干网络将此帧送给 API,如此AP1 才能够将之传递至最终目的地。要实作整个分布式系统,接入点必须通知其他工作站所关联的接入点。

     1.3.2 无线桥接器与分布式系统

    到目前为止,我们都假定分布式系统媒介就是既有的固定式网络。虽然情况通常是如此,但802.11 规格有明确提到,无线媒介本身也可以做为分布式系统。此种无线分布式系统(wireless distribution system,简称 WDS)的配置通常称为「无线桥接器」(wireless bridge )配置,因为它允许网络工程师在链路层连接两个局域网络。无线桥接器可用来快速连接不同的网段,十分适合访问供应商(access provider )使用。市面上大部分的 802.11接入点均支持无线桥接功能。

    1.4   网络界限

    由于无线媒介的性质使然,802.11网络的界限(boundary)可说是相当模糊。事实上,某种程度的模糊是必要的。和移动电话网络一样,允许基本服务区域彼此重叠,不仅可让工作站转换基本服务区的成功机率提高,也可以提供最高层次的网络覆盖率。图1-5 右边的基本服务区域彼此重叠地十分明显。这意味著,当工作站从 BSS2 移动至 BSS4时不致失去信号;这也同时意味,就算 AP3 (或者 AP4 )失灵,也不致瘫痪整个网络。另一方面,如果 AP2 故障,则整个网络就会被分割为两个彼此隔开的区域,位于 BSS1 的工作站只要离开 BSS1 所涵盖的范围而进入BSS3 或BSS4,就会失去与 BSS1 的连接。如何填补这些「空隙」(coverage holes)以避免网络瘫痪,乃是网络设计阶段必须注意的事项;有些新产品提供动态电波调整功能,可以在实际运作时自动填补接入点问的空隙。

     

            图 1-5:ESS 中彼此重叠的 BSS

    不同类型的 802.11网络彼此亦可重叠。在接入点所涵盖的基本服务区域中,亦可以另辟独立型BSS 。图1-6 显示了此二者在空间上的重叠。一部接入点位于图 1-6 的上方,其基本服务区域以阴影表示。两部工作站以基础结构模式运作,通过接入点彼此通讯。三部工作站设置为独立型BSS ,彼此间可以直接通信。虽然这五部工作站被指派至两个不同的 BSS ,它们所使用的还是相同的无线媒介。工作站只有通过 802.11MAC所规范的规则才能够访问媒介;这些规则在设计上就已考虑到,如何能够让多个 802.11网络并存于相同的空间中。这两个 BSS 必须分享单一无线信道的频宽,因此共存的 BSS 之间必然会有性能上的抵消。

     

              图 1-6:不同类型的无线网络彼此重叠

  • 相关阅读:
    【平衡规划】JZOJ4616. 【NOI2016模拟7.12】二进制的世界
    函数中,如何修改形参的默认值
    默认形参在函数定义阶段就已经被赋值,在调用时就可以不用再次赋值了。
    在函数调用时:位置形参、位置实参、关键字实参的特点
    return之为什么能够终止函数,代码演练
    深度理解return具体用法
    函数基础重点掌握内容:创建函数、return返回单个值、return返回多个值、函数名加括号与不加括号的区别
    python之encode和decode编码
    python利用setsockopt获得端口重用
    python并发之多进程
  • 原文地址:https://www.cnblogs.com/aixin0813/p/3163073.html
Copyright © 2011-2022 走看看