zoukankan      html  css  js  c++  java
  • Spark Dataset DataFrame空值null,NaN判断和处理

    Spark Dataset DataFrame空值null,NaN判断和处理

    import org.apache.spark.sql.SparkSession
    import org.apache.spark.sql.Dataset
    import org.apache.spark.sql.Row
    import org.apache.spark.sql.DataFrame
    import org.apache.spark.sql.Column
    import org.apache.spark.sql.DataFrameReader
    import org.apache.spark.rdd.RDD
    import org.apache.spark.sql.catalyst.encoders.ExpressionEncoder
    import org.apache.spark.sql.Encoder
    import org.apache.spark.sql.functions._
    import org.apache.spark.sql.DataFrameStatFunctions
    import org.apache.spark.ml.linalg.Vectors
     
     
    math.sqrt(-1.0)
    res43: Double = NaN
        
    math.sqrt(-1.0).isNaN()
    res44: Boolean = true
       
       
    val data1 = data.toDF("affairs", "gender", "age", "yearsmarried", "children", "religiousness", "education", "occupation", "rating")
    data1: org.apache.spark.sql.DataFrame = [affairs: string, gender: string ... 7 more fields]
        
    data1.limit(10).show
    +-------+------+---+------------+--------+-------------+---------+----------+------+
    |affairs|gender|age|yearsmarried|children|religiousness|education|occupation|rating|
    +-------+------+---+------------+--------+-------------+---------+----------+------+
    |      0|  male| 37|          10|      no|            3|       18|         7|     4|
    |      0|  null| 27|        null|      no|            4|       14|         6|  null|
    |      0|  null| 32|        null|     yes|            1|       12|         1|  null|
    |      0|  null| 57|        null|     yes|            5|       18|         6|  null|
    |      0|  null| 22|        null|      no|            2|       17|         6|  null|
    |      0|  null| 32|        null|      no|            2|       17|         5|  null|
    |      0|female| 22|        null|      no|            2|       12|         1|  null|
    |      0|  male| 57|          15|     yes|            2|       14|         4|     4|
    |      0|female| 32|          15|     yes|            4|       16|         1|     2|
    |      0|  male| 22|         1.5|      no|            4|       14|         4|     5|
    +-------+------+---+------------+--------+-------------+---------+----------+------+
        
     // 删除所有列的空值和NaN
    val resNull=data1.na.drop()
    resNull: org.apache.spark.sql.DataFrame = [affairs: string, gender: string ... 7 more fields]
        
     resNull.limit(10).show()
    +-------+------+---+------------+--------+-------------+---------+----------+------+
    |affairs|gender|age|yearsmarried|children|religiousness|education|occupation|rating|
    +-------+------+---+------------+--------+-------------+---------+----------+------+
    |      0|  male| 37|          10|      no|            3|       18|         7|     4|
    |      0|  male| 57|          15|     yes|            2|       14|         4|     4|
    |      0|female| 32|          15|     yes|            4|       16|         1|     2|
    |      0|  male| 22|         1.5|      no|            4|       14|         4|     5|
    |      0|  male| 37|          15|     yes|            2|       20|         7|     2|
    |      0|  male| 27|           4|     yes|            4|       18|         6|     4|
    |      0|  male| 47|          15|     yes|            5|       17|         6|     4|
    |      0|female| 22|         1.5|      no|            2|       17|         5|     4|
    |      0|female| 27|           4|      no|            4|       14|         5|     4|
    |      0|female| 37|          15|     yes|            1|       17|         5|     5|
    +-------+------+---+------------+--------+-------------+---------+----------+------+
        
     //删除某列的空值和NaN
    val res=data1.na.drop(Array("gender","yearsmarried"))
     
    // 删除某列的非空且非NaN的低于10的
    data1.na.drop(10,Array("gender","yearsmarried"))
        
        
     //填充所有空值的列
    val res123=data1.na.fill("wangxiao123")
    res123: org.apache.spark.sql.DataFrame = [affairs: string, gender: string ... 7 more fields]
        
     res123.limit(10).show()
    +-------+-----------+---+------------+--------+-------------+---------+----------+-----------+
    |affairs|     gender|age|yearsmarried|children|religiousness|education|occupation|     rating|
    +-------+-----------+---+------------+--------+-------------+---------+----------+-----------+
    |      0|       male| 37|          10|      no|            3|       18|         7|          4|
    |      0|wangxiao123| 27| wangxiao123|      no|            4|       14|         6|wangxiao123|
    |      0|wangxiao123| 32| wangxiao123|     yes|            1|       12|         1|wangxiao123|
    |      0|wangxiao123| 57| wangxiao123|     yes|            5|       18|         6|wangxiao123|
    |      0|wangxiao123| 22| wangxiao123|      no|            2|       17|         6|wangxiao123|
    |      0|wangxiao123| 32| wangxiao123|      no|            2|       17|         5|wangxiao123|
    |      0|     female| 22| wangxiao123|      no|            2|       12|         1|wangxiao123|
    |      0|       male| 57|          15|     yes|            2|       14|         4|          4|
    |      0|     female| 32|          15|     yes|            4|       16|         1|          2|
    |      0|       male| 22|         1.5|      no|            4|       14|         4|          5|
    +-------+-----------+---+------------+--------+-------------+---------+----------+-----------+
        
     //对指定的列空值填充
     val res2=data1.na.fill(value="wangxiao111",cols=Array("gender","yearsmarried") )
    res2: org.apache.spark.sql.DataFrame = [affairs: string, gender: string ... 7 more fields]
        
     res2.limit(10).show()
    +-------+-----------+---+------------+--------+-------------+---------+----------+------+
    |affairs|     gender|age|yearsmarried|children|religiousness|education|occupation|rating|
    +-------+-----------+---+------------+--------+-------------+---------+----------+------+
    |      0|       male| 37|          10|      no|            3|       18|         7|     4|
    |      0|wangxiao111| 27| wangxiao111|      no|            4|       14|         6|  null|
    |      0|wangxiao111| 32| wangxiao111|     yes|            1|       12|         1|  null|
    |      0|wangxiao111| 57| wangxiao111|     yes|            5|       18|         6|  null|
    |      0|wangxiao111| 22| wangxiao111|      no|            2|       17|         6|  null|
    |      0|wangxiao111| 32| wangxiao111|      no|            2|       17|         5|  null|
    |      0|     female| 22| wangxiao111|      no|            2|       12|         1|  null|
    |      0|       male| 57|          15|     yes|            2|       14|         4|     4|
    |      0|     female| 32|          15|     yes|            4|       16|         1|     2|
    |      0|       male| 22|         1.5|      no|            4|       14|         4|     5|
    +-------+-----------+---+------------+--------+-------------+---------+----------+------+
        
        
    val res3=data1.na.fill(Map("gender"->"wangxiao222","yearsmarried"->"wangxiao567") )
    res3: org.apache.spark.sql.DataFrame = [affairs: string, gender: string ... 7 more fields]
        
     res3.limit(10).show()
    +-------+-----------+---+------------+--------+-------------+---------+----------+------+
    |affairs|     gender|age|yearsmarried|children|religiousness|education|occupation|rating|
    +-------+-----------+---+------------+--------+-------------+---------+----------+------+
    |      0|       male| 37|          10|      no|            3|       18|         7|     4|
    |      0|wangxiao222| 27| wangxiao567|      no|            4|       14|         6|  null|
    |      0|wangxiao222| 32| wangxiao567|     yes|            1|       12|         1|  null|
    |      0|wangxiao222| 57| wangxiao567|     yes|            5|       18|         6|  null|
    |      0|wangxiao222| 22| wangxiao567|      no|            2|       17|         6|  null|
    |      0|wangxiao222| 32| wangxiao567|      no|            2|       17|         5|  null|
    |      0|     female| 22| wangxiao567|      no|            2|       12|         1|  null|
    |      0|       male| 57|          15|     yes|            2|       14|         4|     4|
    |      0|     female| 32|          15|     yes|            4|       16|         1|     2|
    |      0|       male| 22|         1.5|      no|            4|       14|         4|     5|
    +-------+-----------+---+------------+--------+-------------+---------+----------+------+
        
     //查询空值列
    data1.filter("gender is null").select("gender").limit(10).show
    +------+
    |gender|
    +------+
    |  null|
    |  null|
    |  null|
    |  null|
    |  null|
    +------+
        
        
     data1.filter("gender is not null").select("gender").limit(10).show
    +------+
    |gender|
    +------+
    |  male|
    |female|
    |  male|
    |female|
    |  male|
    |  male|
    |  male|
    |  male|
    |female|
    |female|
    +------+
        
        
     data1.filter( data1("gender").isNull ).select("gender").limit(10).show
    +------+
    |gender|
    +------+
    |  null|
    |  null|
    |  null|
    |  null|
    |  null|
    +------+
        
        
     data1.filter("gender<>''").select("gender").limit(10).show
    +------+
    |gender|
    +------+
    |  male|
    |female|
    |  male|
    |female|
    |  male|
    |  male|
    |  male|
    |  male|
    |female|
    |female|
    +------+
    
  • 相关阅读:
    Spring IOC(控制反转)思想笔记
    实战SpringBoot Admin
    包及权限配置&java存储机理绘制
    极验验证(滑动验证)的使用
    Java基础知识之this关键字知识讲解
    bean生命周期
    笔记-13-多线程 Thread方法 线程安全 生产者和消费者 死锁和阻塞 练习
    JAVA 进行图片中文字识别(准确度高)!!!
    Java 面试题关于包装类
    HashMap底层实现原理及面试常见问题
  • 原文地址:https://www.cnblogs.com/aixing/p/13327325.html
Copyright © 2011-2022 走看看