zoukankan      html  css  js  c++  java
  • 洛谷P1373小a和uim之大逃离(DP)

    题目背景

    小a和uim来到雨林中探险。突然一阵北风吹来,一片乌云从北部天边急涌过来,还伴着一道道闪电,一阵阵雷声。刹那间,狂风大作,乌云布满了天空,紧接着豆大的雨点从天空中打落下来,只见前方出现了一个披头散发、青面獠牙的怪物,低沉着声音说:“呵呵,既然你们来到这,只能活下来一个!”。小a和他的小伙伴都惊呆了!

    题目描述

    瞬间,地面上出现了一个n*m的巨幅矩阵,矩阵的每个格子上有一坨0~k不等量的魔液。怪物各给了小a和uim一个魔瓶,说道,你们可以从矩阵的任一个格子开始,每次向右或向下走一步,从任一个格子结束。开始时小a用魔瓶吸收地面上的魔液,下一步由uim吸收,如此交替下去,并且要求最后一步必须由uim吸收。魔瓶只有k的容量,也就是说,如果装了k+1那么魔瓶会被清空成零,如果装了k+2就只剩下1,依次类推。怪物还说道,最后谁的魔瓶装的魔液多,谁就能活下来。小a和uim感情深厚,情同手足,怎能忍心让小伙伴离自己而去呢?沉默片刻,小a灵机一动,如果他俩的魔瓶中魔液一样多,不就都能活下来了吗?小a和他的小伙伴都笑呆了!

    现在他想知道他们都能活下来有多少种方法。

    输入输出格式

    输入格式:

    第一行,三个空格隔开的整数n,m,k

    接下来n行,m列,表示矩阵每一个的魔液量。同一行的数字用空格隔开。

    输出格式:

    一个整数,表示方法数。由于可能很大,输出对1 000 000 007取余后的结果。

    输入输出样例

    输入样例#1:

     2 2 3
     1 1
     1 1
    

    输出样例#1:

     4
    

    说明

    【题目来源】

    lzn改编

    【样例解释】

    样例解释:四种方案是:(1,1)->(1,2),(1,1)->(2,1),(1,2)->(2,2),(2,1)->(2,2)。

    【数据范围】

    对于20%的数据,n,m<=10,k<=2

    对于50%的数据,n,m<=100,k<=5

    对于100%的数据,n,m<=800,1<=k<=15


    (Solution:)

    OK,此题DP方程可以说是十分巧妙了

    每个格子都可以做起点,所以你需要……你什么也不需要,按常规的按方法做,然后把所有格子里的方案数加起来就可以了

    再来讲讲DP方程,由于你只能往右、下走,所以只能从上面或左边转移过来。不妨设 (f_{i,j,k}) 为小a走到第 ({i,j}) 号格子,且与uim的魔液量的差为 (k) ;同理,设 (g_{i,j,k,}) 为uim的DP数组,则转移方程为:

    //v是最大容量且已经加了1,计算方便
    f[i][j][k]=(f[i][j][k]+g[i-1][j][(k-a[i][j]+v)%v])%mod;//从上面转移
    f[i][j][k]=(f[i][j][k]+g[i][j-1][(k-a[i][j]+v)%v])%mod;//从左边转移
    g[i][j][k]=(g[i][j][k]+f[i-1][j][(k+a[i][j])%v])%mod;//从上面转移
    g[i][j][k]=(g[i][j][k]+f[i][j-1][(k+a[i][j])%v])%mod;//从左边转移
    

    另外由于小a可以从任意一格开始,所以只有 (f) 数组要初始化:

    //a[i][j]是魔液量,初值为一表示只有一种方案
    for(int i=1;i<=n;i++)
        for(int j=1;j<=m;j++)
            f[i][j][a[i][j]%v]=1;
         //此时uim的魔液量为0,所以差值为a[i][j]%v
    

    不多说了,上代码:

    #include<bits/stdc++.h>
    #define il inline
    using namespace std;
    const int N=805,mod=1e9+7;
    il int read(){
        int f=1,w=0;char c=0;
        while(!isdigit(c))
        {
            if(c=='-') f=-1;
            c=getchar();
        }
        while(isdigit(c)) w=w*10+(c^48),c=getchar();
        return f*w;
    }
    int n,m,v,a[N][N],f[N][N][16],g[N][N][16],ans;
    void res(int i,int j,int k){
        f[i][j][k]=(f[i][j][k]+g[i-1][j][(k-a[i][j]+v)%v])%mod;
        f[i][j][k]=(f[i][j][k]+g[i][j-1][(k-a[i][j]+v)%v])%mod;
        g[i][j][k]=(g[i][j][k]+f[i-1][j][(k+a[i][j])%v])%mod;
        g[i][j][k]=(g[i][j][k]+f[i][j-1][(k+a[i][j])%v])%mod;
    }//DP方程
    int main(){
        n=read(),m=read(),v=read()+1;
        for(int i=1;i<=n;i++)
            for(int j=1;j<=m;j++)
                a[i][j]=read(),f[i][j][a[i][j]%v]=1;
        for(int i=1;i<=n;i++)
            for(int j=1;j<=m;j++)
                for(int k=0;k<v;k++)
                    res(i,j,k);
        for(int i=1;i<=n;i++)
            for(int j=1;j<=m;j++)
                ans=(ans+g[i][j][0])%mod;
           //由于最后一人必须是uim,所以只要统计g数组
        cout<<ans<<endl;
        return 0;
    }
    
  • 相关阅读:
    tr加不上边框
    placeholder 用法
    <input/>文本输入框效果:
    colspan="2"、列、rowspan="3"、行、用法!
    CSS--实现小三角形
    “div+css”下拉菜单
    HDU4624 Endless Spin(概率&&dp)
    chanme的博客搬家了!
    HDU5487 Difference of Languages(BFS)
    HDU5469 Antonidas(树分治&&哈希)
  • 原文地址:https://www.cnblogs.com/ajy-shi-cj-zui-cai/p/10385496.html
Copyright © 2011-2022 走看看