zoukankan      html  css  js  c++  java
  • 文件路径[BOI2015]

    题目描述

    https://www.luogu.com.cn/problem/P6843

    题解

    题目实际在求这样一个东西:给定一棵树和边权,你可以在树中加上一条长为 (S) 的有向边

    对于每个叶子节点问:是否能构造出一条从根节点出发以该节点为终点的长为 (K) 的路径

    设有一个叶子节点 (x)

    情况1

    根到 (x) 的路径长等于 (K)

    那显然答案就是 Yes

    情况2

    走了一次附加的有向边使得路径长为 (K)

    考虑这条有向边的终点在哪里:由于走过这条有向边之后还要从它的终点走到 (x),所以有向边的终点一定要是 (x) 的一个祖先

    记点 (p) 的深度是 (d_p),那么假设走了一条 (p ightarrow q) 的有向边,总长度就是 (d_p+S+(d_x-d_q))

    其中,(p) 是树上的任意一个非叶子节点,(q) 必须是 (x) 的祖先

    要判断是否有 (p,q) 满足 (d_p+S+(d_x-d_q)=K),可以考虑枚举 (q),这样就确定了 (d_x-d_q),预处理出 (d_p+S) 可以取哪些值(存在一个 bool 数组里),如果存在某个 (p) 使得 (d_p+S=K-(d_x-d_q)) 那么 (x) 的答案就是 Yes

    一个例子

    1.png

    情况3

    当然,可能可以走很多次附加的有向边(在一个环上一直绕)

    如果一条有向边可以走很多次,那么必须满足它的终点是起点的祖先

    又因为终点要是 (x) 的祖先,所以现在需要找到这样一条路径 (p ightarrow q)

    满足 (d_x+t*(d_p-d_q+S)=K) ((t) 为一个正整数)

    其中 (q)(x) 的祖先,(p)(q) 子树中一个非叶子节点

    在dfs时,每到一个非叶子节点就再把以它为根的子树遍历一遍,把所有合法的 (d_p-d_q+S) 存在 bool 数组里,并在回溯时清除贡献

    枚举 (K-d_x) 的所有约数,判断是否有满足条件的 (d_p-d_q+S) 即可

    时间复杂度 (O((n+m)^2+msqrt{K}))

    #include <bits/stdc++.h>
    #define N 20005
    using namespace std;
    typedef long long ll;
    
    template <typename T>
    inline void read(T &num) {
    	T x = 0, ff = 1; char ch = getchar();
    	for (; ch > '9' || ch < '0'; ch = getchar()) if (ch == '-') ff = -1;
    	for (; ch <= '9' && ch >= '0'; ch = getchar()) x = (x << 3) + (x << 1) + (ch ^ '0');
    	num = x * ff;
    }
    
    int n, ccf, K, S, a[N], d[N];
    int head[N], pre[N<<1], to[N<<1], sz;
    int ok[1000005], ok2[1000005], ans[N];
    
    inline void addedge(int u, int v) {
    	pre[++sz] = head[u]; head[u] = sz; to[sz] = v;
    	pre[++sz] = head[v]; head[v] = sz; to[sz] = u;
    }
    
    void dfs1(int x, int fa) {
    	if (d[x]+S <= 1000000 && x <= ccf) ok[d[x]+S]++;
    	for (int i = head[x]; i; i = pre[i]) {
    		int y = to[i];
    		if (y == fa) continue;
    		d[y] = d[x] + a[y];
    		dfs1(y, x);
    	}
    } 
    
    void dfs3(int x, int fa, int rt, int v) {
    	if (x > ccf) return;
    	int now = d[x] - d[rt] + S;
    	if (now <= 1000000) ok2[now] += v;
    	for (int i = head[x]; i; i = pre[i]) {
    		int y = to[i];
    		if (y != fa) dfs3(y, x, rt, v);
    	}
    }
    
    int stk[N], top;
    
    void solve(int x) {
    	if (d[x] == K) {
    		ans[x] = 1; return;
    	}
    	for (int i = 1; i <= top; i++) {
    		int y = stk[i];
    		int v = d[x] - d[y];
    		if (v <= K && ok[K-v]) ans[x] = 1;
    	}
    	if (d[x] < K) {
    		int v = K - d[x];
    		for (int i = 1; i * i <= v; i++) {
    			if (v % i == 0) {
    				if (ok2[i] || ok2[v/i]) ans[x] = 1;
    			}
    		}
    	}
    }
    
    void dfs2(int x, int fa) {
    	if (x > ccf) {
    		solve(x);
    		return;
    	}
    	stk[++top] = x;
    	dfs3(x, fa, x, 1);
    	for (int i = head[x]; i; i = pre[i]) {
    		int y = to[i];
    		if (y != fa) dfs2(y, x);
    	}
    	dfs3(x, fa, x, -1);
    	top--;
    }
    
    int main() {
    	read(n); read(ccf); read(K); read(S); S++;
    	swap(ccf, n); n += ccf;
    	for (int i = 1, p; i <= n; i++) {
    		read(p); read(a[i]); a[i]++;
    		addedge(p, i);
    	}
    	dfs1(0, 0);
    	dfs2(0, 0);
    	for (int i = ccf + 1; i <= n; i++) puts(ans[i]?"YES":"NO");
    	return 0;
    }
    
  • 相关阅读:
    PHP中单引号与双引号的区别分析
    utf8_unicode_ci与utf8_general_ci的区别
    [mysql-Ver5.6.23] windows版my.ini配置
    Gateway/Worker模型 数据库使用示例
    php 字符串 以 开头 以结尾 startWith endWith
    MySQL错误ERROR 2002 (HY000): Can't connect to local MySQL server
    vim变ide
    在Vue中使用样式
    Vue指令之`v-model`和`双向数据绑定
    Vue指令之事件修饰符
  • 原文地址:https://www.cnblogs.com/ak-dream/p/AK_DREAM113.html
Copyright © 2011-2022 走看看