题目描述
https://www.luogu.com.cn/problem/P6843
题解
题目实际在求这样一个东西:给定一棵树和边权,你可以在树中加上一条长为 (S) 的有向边
对于每个叶子节点问:是否能构造出一条从根节点出发以该节点为终点的长为 (K) 的路径
设有一个叶子节点 (x)
情况1
根到 (x) 的路径长等于 (K)
那显然答案就是 Yes
情况2
走了一次附加的有向边使得路径长为 (K)
考虑这条有向边的终点在哪里:由于走过这条有向边之后还要从它的终点走到 (x),所以有向边的终点一定要是 (x) 的一个祖先
记点 (p) 的深度是 (d_p),那么假设走了一条 (p ightarrow q) 的有向边,总长度就是 (d_p+S+(d_x-d_q))
其中,(p) 是树上的任意一个非叶子节点,(q) 必须是 (x) 的祖先
要判断是否有 (p,q) 满足 (d_p+S+(d_x-d_q)=K),可以考虑枚举 (q),这样就确定了 (d_x-d_q),预处理出 (d_p+S) 可以取哪些值(存在一个 bool
数组里),如果存在某个 (p) 使得 (d_p+S=K-(d_x-d_q)) 那么 (x) 的答案就是 Yes
一个例子
情况3
当然,可能可以走很多次附加的有向边(在一个环上一直绕)
如果一条有向边可以走很多次,那么必须满足它的终点是起点的祖先
又因为终点要是 (x) 的祖先,所以现在需要找到这样一条路径 (p ightarrow q):
满足 (d_x+t*(d_p-d_q+S)=K) ((t) 为一个正整数)
其中 (q) 是 (x) 的祖先,(p) 是 (q) 子树中一个非叶子节点
在dfs时,每到一个非叶子节点就再把以它为根的子树遍历一遍,把所有合法的 (d_p-d_q+S) 存在 bool
数组里,并在回溯时清除贡献
枚举 (K-d_x) 的所有约数,判断是否有满足条件的 (d_p-d_q+S) 即可
时间复杂度 (O((n+m)^2+msqrt{K}))
#include <bits/stdc++.h>
#define N 20005
using namespace std;
typedef long long ll;
template <typename T>
inline void read(T &num) {
T x = 0, ff = 1; char ch = getchar();
for (; ch > '9' || ch < '0'; ch = getchar()) if (ch == '-') ff = -1;
for (; ch <= '9' && ch >= '0'; ch = getchar()) x = (x << 3) + (x << 1) + (ch ^ '0');
num = x * ff;
}
int n, ccf, K, S, a[N], d[N];
int head[N], pre[N<<1], to[N<<1], sz;
int ok[1000005], ok2[1000005], ans[N];
inline void addedge(int u, int v) {
pre[++sz] = head[u]; head[u] = sz; to[sz] = v;
pre[++sz] = head[v]; head[v] = sz; to[sz] = u;
}
void dfs1(int x, int fa) {
if (d[x]+S <= 1000000 && x <= ccf) ok[d[x]+S]++;
for (int i = head[x]; i; i = pre[i]) {
int y = to[i];
if (y == fa) continue;
d[y] = d[x] + a[y];
dfs1(y, x);
}
}
void dfs3(int x, int fa, int rt, int v) {
if (x > ccf) return;
int now = d[x] - d[rt] + S;
if (now <= 1000000) ok2[now] += v;
for (int i = head[x]; i; i = pre[i]) {
int y = to[i];
if (y != fa) dfs3(y, x, rt, v);
}
}
int stk[N], top;
void solve(int x) {
if (d[x] == K) {
ans[x] = 1; return;
}
for (int i = 1; i <= top; i++) {
int y = stk[i];
int v = d[x] - d[y];
if (v <= K && ok[K-v]) ans[x] = 1;
}
if (d[x] < K) {
int v = K - d[x];
for (int i = 1; i * i <= v; i++) {
if (v % i == 0) {
if (ok2[i] || ok2[v/i]) ans[x] = 1;
}
}
}
}
void dfs2(int x, int fa) {
if (x > ccf) {
solve(x);
return;
}
stk[++top] = x;
dfs3(x, fa, x, 1);
for (int i = head[x]; i; i = pre[i]) {
int y = to[i];
if (y != fa) dfs2(y, x);
}
dfs3(x, fa, x, -1);
top--;
}
int main() {
read(n); read(ccf); read(K); read(S); S++;
swap(ccf, n); n += ccf;
for (int i = 1, p; i <= n; i++) {
read(p); read(a[i]); a[i]++;
addedge(p, i);
}
dfs1(0, 0);
dfs2(0, 0);
for (int i = ccf + 1; i <= n; i++) puts(ans[i]?"YES":"NO");
return 0;
}