zoukankan      html  css  js  c++  java
  • 无归岛[HNOI2009]

    题目描述

    https://www.luogu.com.cn/problem/P4410

    题解

    原图显然是一个仙人掌(似乎还有些别的性质 但是其实没什么必要)

    先考虑树的情况,题意即为不能同时选择相邻的两点,设 (f[x][0/1]) 表示选/不选 (x) 时, (x) 子树内的最大战斗力

    (f[x][0]=maxlimits_{yin son(x)} (max(f[y][0],f[y][1])))

    (f[x][1]=maxlimits_{yin son(x)} (f[y][0]) + A_x)

    在环上如何dp?

    在环上找到一个点 (x) 并从那里把环断开,分 (x) 选或 (x) 不选两种,分别进行dp来推出 (f[x][0/1]) 即可

    代码

    #include <bits/stdc++.h>
    #define N 500005
    using namespace std;
    
    int n, m, ans, a[N], f[N][2];
    int head[N], pre[N<<1], to[N<<1], sz;
    
    inline void addedge(int u, int v) {
    	pre[++sz] = head[u]; head[u] = sz; to[sz] = v;
    	pre[++sz] = head[v]; head[v] = sz; to[sz] = u;
    }
    
    int dfn[N], low[N], stk[N], top, c[N], tot, tme;
    
    void solve(int x) {
    	int a0 = 0, a1 = 0, b0 = 0, b1 = -0x3f3f3f3f; //不选x
    	for (int i = 1; i <= tot; i++) {
    		a0 = max(b0, b1) + f[c[i]][0]; a1 = b0 + f[c[i]][1];
    		b0 = a0; b1 = a1;
    	}
    	f[x][0] += max(b0, b1);
    	a0 = a1 = 0; b0 = -0x3f3f3f3f; b1 = 0; //选择x
    	for (int i = 1; i <= tot; i++) {
    		a0 = max(b0, b1) + f[c[i]][0]; a1 = b0 + f[c[i]][1];
    		b0 = a0; b1 = a1;
    	}
    	f[x][1] += b0;
    }
    
    void tarjan(int x) {
    	dfn[x] = low[x] = ++tme;
    	stk[++top] = x;
    	f[x][1] = a[x];
    	for (int i = head[x]; i; i = pre[i]) {
    		int y = to[i];
    		if (!dfn[y]) {
    			tarjan(y);
    			low[x] = min(low[x], low[y]);
    			if (dfn[x] == low[y]) {
    				int u = 0; tot = 0;
    				do {
    					u = stk[top--];
    					c[++tot] = u;
    				} while (u != y);
    				solve(x);
    			} else if (dfn[x] < low[y]) {
    				f[x][0] += max(f[y][0], f[y][1]);
    				f[x][1] += f[y][0];
    			}
    		} else low[x] = min(low[x], dfn[y]);
    	}
    }
    
    int main() {
    	scanf("%d %d", &n, &m);
    	for (int i = 1, u, v; i <= m; i++) {
    		scanf("%d %d", &u, &v);
    		addedge(u, v);
    	}
    	for (int i = 1; i <= n; i++) scanf("%d", &a[i]);
    	tarjan(1);
    	printf("%d
    ", max(f[1][0], f[1][1]));
    	return 0;
    }
    
  • 相关阅读:
    小短文1-判别法浅谈
    高等代数半期考试
    让CNN跑起来,以下是调参的所有秘密
    杂谈
    自适应中值滤波器
    用色调,饱和度,亮度表示颜色
    用类处理彩色图像
    操作像素
    机器学习前言
    直方图均衡化
  • 原文地址:https://www.cnblogs.com/ak-dream/p/AK_DREAM117.html
Copyright © 2011-2022 走看看