题目:从u到v经过多少条边。
思路:
考虑他是怎么走的??
从\(u\)到\(v\)一定是\(fa[u]\),\(fa[fa[u]]\),反正就是走\(LCA\),那么如果算出每个点到父亲的期望步数,和父亲到该点的期望步数就可做了。
设\(f(x) : x -> fa,g(x) : fa -> x\).
那么:
\(f(x) = {1 \over deg[x]} + \sum_{y是x的儿子} {{f(y) + 1 + f(x)} \over deg[x]}\)
\(g(x) = {1 \over deg[fa[x]]} + {{1 + g[x] + g[fa[x]]} \over deg[fa[x]]} + \sum_{y 属于 son[fa[x]]{xor}y != x} {{g[x] + 1 + f[x]} \over {deg[fa[x]]}}\)
于是我们罪恶的\(LCA\)开始了(情报中心)
#include <bits/stdc++.h>
using namespace std;
#define ll long long
inline int read () {
int q=0,f=1;char ch = getchar();
while(!isdigit(ch)){
if(ch=='-')f=-1;ch=getchar();
}
while(isdigit(ch)){
q=q*10+ch-'0';ch=getchar();
}
return q*f;
}
const int maxn = 1000010;
ll dp[maxn][2];
int head[maxn];
int cnt;
int siz[maxn];
int f[maxn][20];
int dep[maxn];
int n,m,u,v,x,y;
struct node {
int to;
int nxt;
}e[maxn << 1];
const int mod = 1e9+7;
inline void add(int u,int v) {
e[++cnt].to = v;
e[cnt].nxt = head[u];
head[u] = cnt;
return;
}
inline void Add_edge(int u,int v) {
add(u,v);add(v,u);
return;
}
inline void dfs1(int x,int fa) {
siz[x] = 1;
for(int i = head[x];i;i=e[i].nxt) {
int y = e[i].to;
if(y != fa) {
dfs1(y,x);
siz[x] += siz[y];
}
dp[x][0] = siz[x] * 2 - 1;
dp[x][1] = (n - siz[x]) * 2 - 1;
}
}
inline void dfs2(int x,int fa) {
dep[x] = dep[fa] + 1;
dp[x][0] += dp[fa][0];
dp[x][1] += dp[fa][1];
f[x][0] = fa;
for(int i = 1;i <= 17; ++i) {
f[x][i] = f[f[x][i - 1]][i - 1];
}
for(int i = head[x];i;i=e[i].nxt) {
int y = e[i].to;
if(y != fa) dfs2(y,x);
}
}
inline int lca(int x,int y) {
if(dep[x] < dep[y]) swap(x,y);
for(int i = 17;i >= 0; --i) {
if(dep[x] - (1 << i) >= dep[y]) {
x = f[x][i];
}
}
if(x == y) return x;
for(int i = 17;i >= 0; --i) {
if(f[x][i] == f[y][i]) {
continue;
}
x = f[x][i];
y = f[y][i];
}
return f[x][0];
}
int main () {
freopen("tree.in","r",stdin);
freopen("tree.out","w",stdout);
n = read(),m = read();
for(int i = 1;i < n; ++i) {
u = read(),v = read();
Add_edge(u,v);
}
dfs1(1,0);
dp[1][0] = dp[1][1] = 0;
dfs2(1,0);
for(int i = 1;i <= m; ++i) {
x = read(),y = read();
int anc = lca(x,y);
printf("%d\n",(dp[x][0] + dp[y][1] - dp[anc][0] - dp[anc][1])%mod);
}
return 0;
}