zoukankan      html  css  js  c++  java
  • 循环移位(Cycle)

    循环移位(Cycle)


    Description

    Cycle shifting refers to following operation on the sting. Moving first letter to the end and keeping rest part of the string. For example, apply cycle shifting on ABCD will generate BCDA. Given any two strings, to judge if arbitrary times of cycle shifting on one string can generate the other one.

    Input

    There m lines in the input, while each one consists of two strings separated by space. Each string only contains uppercase letter 'A'~'Z'.

    Output

    For each line in input, output YES in case one string can be transformed into the other by cycle shifting, otherwise output NO.

    Example

    Input

    AACD CDAA
    ABCDEFG EFGABCD
    ABCD ACBD
    ABCDEFEG ABCDEE
    

    Output

    YES
    YES
    NO
    NO
    

    Restrictions

    0 <= m <= 5000

    1 <= |S1|, |S2| <= 10^5

    Time: 2 sec

    Memory: 256 MB

    1. 原理与要点:读入两个字符串A和B,如果两字符串长度不同,则直接输出No。如果长度相同,则把A串接在A串后面形成一个新串,然后查询B是否是新串的子串,如果是则Yes,否则No
    2. 遇到的问题:
    3. 时间和空间复杂度:时间复杂度(O(N)),空间复杂度(O(N))
    #include "cstdio"
    #include "cstring"
    
    using namespace std;
    const int maxn = 2e5 + 100;
    
    char s[maxn], t[maxn];
    const int SZ = 1<<20;  //快速io
    struct fastio{
        char inbuf[SZ];
        char outbuf[SZ];
        fastio(){
            setvbuf(stdin,inbuf,_IOFBF,SZ);
            setvbuf(stdout,outbuf,_IOFBF,SZ);
        }
    }io;
    int main() {
        while (scanf("%s %s", s, t) != EOF) {
            if (strlen(s) != strlen(t)) {
                printf("NO
    ");
                continue;
            }
            int len = strlen(s);
            for (int i = len; i < len * 2; i++) {
                s[i] = s[i - len];
            }
            s[len * 2] = '';
            if (strstr(s, t) != NULL)
                printf("YES
    ");
            else
                printf("NO
    ");
        }
        return 0;
    }
    
  • 相关阅读:
    个人工作总结2
    个人工作总结1
    《梦断代码》阅读笔记01
    构建之法阅读笔记4
    四则运算-安卓版
    最大联通子数组之和(dfs,记忆化搜索,状态压缩)
    第五周进度报告
    第四周进度报告
    最大子数列之和问题
    构建之法阅读笔记3
  • 原文地址:https://www.cnblogs.com/albert-biu/p/11542121.html
Copyright © 2011-2022 走看看