zoukankan      html  css  js  c++  java
  • HDU 4135 Co-prime (容斥原理、分解质因数)

    Co-prime

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 6224    Accepted Submission(s): 2506


    Problem Description
    Given a number N, you are asked to count the number of integers between A and B inclusive which are relatively prime to N.
    Two integers are said to be co-prime or relatively prime if they have no common positive divisors other than 1 or, equivalently, if their greatest common divisor is 1. The number 1 is relatively prime to every integer.
     
    Input
    The first line on input contains T (0 < T <= 100) the number of test cases, each of the next T lines contains three integers A, B, N where (1 <= A <= B <= 1015) and (1 <=N <= 109).
     
    Output
    For each test case, print the number of integers between A and B inclusive which are relatively prime to N. Follow the output format below.
     
    Sample Input
    2
    1 10 2
    3 15 5
     
    Sample Output
    Case #1: 5
    Case #2: 10
    Hint
    In the first test case, the five integers in range [1,10] which are relatively prime to 2 are {1,3,5,7,9}.
     
    题意:求区间[a,b]内与n互质的的数的数量
     
    第一步: 求n的质因子
    第二步:通过求与n不互质的数的数量,得到与n互质的数的数量;
     
    例:

    m=12,n=30.

    第一步:求出n的质因子:2,3,5;

    第二步:[1,m]中是n的质因子的倍数的数就不互质(2,4,6,8,10,12)->m/2  6个      (3,6,9,12)->m/3  4个,      (5,10)->m/5  2个。

    答案显然不是全加起来。利用容斥原理去重     公式:m/2+m/3+m/5-m/(2*3)-m/(2*5)-m/(3*5)+m/(2*3*5)。除数是奇数的时候加,是偶数的时候减。

    #include <iostream>
    #include <vector>
    #include <cstdio>
    using namespace std;
    vector<int>Q;
    
    void init(int n)//求质因子;
    {
        Q.clear();
        for(int i=2; i*i<n; i++)//这里是i*i<n,不是i<n;
        {
            if(n%i==0)
            {
                Q.push_back(i);
                while(n%i==0)
                    n/=i;
            }
        }
        if(n>1)
            Q.push_back(n);
    }
    long long fun(long long a)
    {
        long long ans=0,val,cnt;
        for(int i=1; i<(1<<Q.size()); i++)//用二进制来1,0来表示第几个素因子是否被用到,如m=3,三个因子是2,3,5,则i=3时二进制是011,表示第2、3个因子被用到
        {
            val=1;
            cnt=0;
            for(int j=0; j<Q.size(); j++)
            {
                if(i&(1<<j))//判断第几个因子目前被用到
                {
                    val*=Q[j];
                    cnt++;
                }
            }
            if(cnt&1)//容斥原理,奇加偶减
                ans+=a/val;
            else
                ans-=a/val;
        }
        return a-ans;
    }
    int main()
    {
        int t,cas=0;
        long long  a,b,n;
        cin>>t;
        while(t--)
        {
            cin>>a>>b>>n;
            init(n);
            long long ans=fun(b)-fun(a-1);
            cout<<"Case #"<<++cas<<": "<<ans<<endl;
        }
        return 0;
    }
     
  • 相关阅读:
    [BZOJ4876][ZJOI2017]线段树
    [FJOI2016]建筑师(斯特林数)
    WC2018伪题解
    [BZOJ3514]CodeChef MARCH14 GERALD07加强版(LCT+主席树)
    [BZOJ2594][WC2006]水管局长加强版(LCT+Kruskal)
    [洛谷3796]【模板】AC自动机(加强版)
    [洛谷3808]【模板】AC自动机(简单版)
    [BZOJ3261]最大异或和
    [BZOJ3439]Kpm的MC密码
    [POI2006]Periods of Words
  • 原文地址:https://www.cnblogs.com/albert-biu/p/8419687.html
Copyright © 2011-2022 走看看