zoukankan      html  css  js  c++  java
  • 【POJ 3269】Building A New Barn

    Building A New Barn
    Time Limit: 2000MS   Memory Limit: 65536K
    Total Submissions: 1773   Accepted: 571

    Description

    After scrimping and saving for years, Farmer John has decided to build a new barn. He wants the barn to be highly accessible, and he knows the coordinates of the grazing spots of all N (2 ≤ N ≤ 10,000 cows. Each grazing spot is at a point with integer coordinates (XiYi) (-10,000 ≤ Xi ≤ 10,000; -10,000 ≤ Yi ≤ 10,000). The hungry cows never graze in spots that are horizontally or vertically adjacent.

    The barn must be placed at integer coordinates and cannot be on any cow's grazing spot. The inconvenience of the barn for any cow is given the Manhattan distance formula | X - Xi | + | Y - Yi|, where (XY) and (XiYi) are the coordinates of the barn and the cow's grazing spot, respectively. Where should the barn be constructed in order to minimize the sum of its inconvenience for all the cows?

    Input

    Line 1: A single integer: N 
    Lines 2..N+1: Line i+1 contains two space-separated integers which are the grazing location (XiYi) of cow i

    Output

    Line 1: Two space-separated integers: the minimum inconvenience for the barn and the number of spots on which Farmer John can build the barn to achieve this minimum.

    Sample Input

    4
    1 -3
    0 1
    -2 1
    1 -1

    Sample Output

    10 4

    Hint

    The minimum inconvenience is 10, and there are 4 spots that Farmer John can build the farm to achieve this: (0, -1), (0, 0), (1, 0), and (1, 1).

    Source

     
    很坑爹的一题。
    根据题目我们可以知道,就是求一点到其它点的曼哈顿距离总和最小值以及解的个数。
    那么我们要知道任意两个点都可以形成一个矩形(也有可能是一条直线),那么这个矩形内任意点到这两个点的曼哈顿距离最小,并且等于这两个点的曼哈顿距离。
    而且题目也给出了任意两个点都不相邻,这更是说明了符合上述条件后一定会有解。
    其实就是求矩形的交集。(偶数个点)这个问题交给大家思考。
    奇数个点的情况要稍微复杂,我们先排出最中间的那个点,然后按上述方法求解,加判断即可。
    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    
    using namespace std;
    
    struct Vertex
    {
        int x, y;
    }v[10005];
    
    int n, left, right, up, down, mid, cost;
    
    bool cmp1(Vertex A, Vertex B)
    {
        return (A.x < B.x || (A.x == B.x && A.y < B.y));
    }
    
    bool cmp2(Vertex A, Vertex B)
    {
        return A.y < B.y;
    }
    
    int main()
    {
        scanf("%d", &n);
        for (int i = 0; i < n; ++i) scanf("%d%d", &v[i].x, &v[i].y);
        sort(v, v + n, cmp1);
        mid = n >> 1;
        left = v[mid - 1].x;
        right = v[mid + (n & 1)].x;
        sort(v, v + (n >> 1), cmp2);
        sort(v + (n >> 1) + (n & 1), v + n, cmp2);
        cost = 0;
        int l = 0, r = n - 1;
        up = 10005;
        down = -10005;
        while (l < r)
        {
            cost += abs(v[l].x - v[r].x) + abs(v[l].y - v[r].y);
            up = min(up, max(v[l].y, v[r].y));
            down = max(down, min(v[l].y, v[r].y));
            l++;
            r--;
        }
        if (n & 1)
        {
                int f = 4;
                if (v[mid].x >= left && v[mid].x <= right && v[mid].y >= down && v[mid].y <= up)
                {
                    if (v[mid].x == left) f--;
                    if (v[mid].x == right) f--;
                    if (v[mid].y == up) f--;
                    if (v[mid].y == down) f--;
                    printf("%d %d
    ", cost + 1, f);
                }
                else
                {
                    if (down > v[mid].y)
                {
                    cost += down - v[mid].y;
                    if (left == v[mid].x || right == v[mid].x) cost++;
                    printf("%d 1
    ", cost);
                }
                else
                    if (up < v[mid].y)
                    {
                        cost += v[mid].y - up;
                        if (left == v[mid].x || right == v[mid].x) cost++;
                        printf("%d 1
    ", cost);
                    }
                }
        }
        else
        {
            int del = 0;
            for (int i = 0; i < n; ++i)
                if (left <= v[i].x && right >= v[i].x && down <= v[i].y && up >= v[i].y)
                    del++;
            printf("%d %d
    ", cost, (right - left + 1) * (up - down + 1) - del);
        }
        return 0;
    }
  • 相关阅读:
    JobTracker作业启动过程分析
    结构体传参
    getchar()
    char *a与char a[n]的区别
    EOF NULL 之间的区别
    现代方法第15章第三节的程序
    交换机console口连接
    undefined reference问题总结
    二维数组与指针
    数组作为参数传递的时候,被调用的函数内无法计算出数组的大小
  • 原文地址:https://www.cnblogs.com/albert7xie/p/4840887.html
Copyright © 2011-2022 走看看