zoukankan      html  css  js  c++  java
  • 【POJ 1141】Brackets Sequence

    Brackets Sequence
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 27996   Accepted: 7936   Special Judge

    Description

    Let us define a regular brackets sequence in the following way: 

    1. Empty sequence is a regular sequence. 
    2. If S is a regular sequence, then (S) and [S] are both regular sequences. 
    3. If A and B are regular sequences, then AB is a regular sequence. 

    For example, all of the following sequences of characters are regular brackets sequences: 

    (), [], (()), ([]), ()[], ()[()] 

    And all of the following character sequences are not: 

    (, [, ), )(, ([)], ([(] 

    Some sequence of characters '(', ')', '[', and ']' is given. You are to find the shortest possible regular brackets sequence, that contains the given character sequence as a subsequence. Here, a string a1 a2 ... an is called a subsequence of the string b1 b2 ... bm, if there exist such indices 1 = i1 < i2 < ... < in = m, that aj = bij for all 1 = j = n.

    Input

    The input file contains at most 100 brackets (characters '(', ')', '[' and ']') that are situated on a single line without any other characters among them.

    Output

    Write to the output file a single line that contains some regular brackets sequence that has the minimal possible length and contains the given sequence as a subsequence.

    Sample Input

    ([(]

    Sample Output

    ()[()]

    Source

     
    以后再也不能相信POJ的SPECIAL JUDGE了,其实根本没有好伐。
    搞得我跪了。。。
    下了个测试数据看看。。。
    咳咳。。好吧,说回这题,其实是区间DP+答案输出。
    答案递归输出,也比较简单。
    DP方程可以在刘汝佳老师的黑书上找到,这里不再赘述。
    #include <cstdio>
    #include <cstring>
    
    using namespace std;
    
    char s[105];
    int n, f[105][105], p[105][105];
    
    void print(int l, int r)
    {
        if (l > r) return;
        if (p[l][r] == -1)
        {
            printf("%c", s[l]);
            print(l + 1, r - 1);
            printf("%c", s[r]);
            return;
        }
        if (p[l][r] == -2)
        {
            printf("%c", s[l]);
            print(l + 1, r);
            if (s[l] == '(') printf(")");
            else printf("]");
            return;
        }
        if (p[l][r] == -3)
        {
            if (s[r] == ')') printf("(");
            else printf("[");
            print(l, r - 1);
            printf("%c", s[r]);
            return;
        }
        print(l, p[l][r] - 1);
        print(p[l][r], r);
    }
    
    int main()
    {
        fgets(s, 104, stdin);
        n = strlen(s) - 1;
        memset(f, 0x7f, sizeof(f));
        memset(p, 0, sizeof(p));
        for (int i = 0; i < n; ++i)
        {
            f[i][i] = 1;
            if (s[i] == '(' || s[i] == '[') p[i][i] = -2;
            else p[i][i] = -3;
            for (int j = 0; j < i; ++j)
                f[i][j] = 0;
        }
        for (int i = n - 1; i >= 0; --i)
            for (int j = i + 1; j < n; ++j)
            {
                if ((s[i] == '(' || s[j] == '[') && f[i][j] > f[i + 1][j] + 1)
                {
                    f[i][j] = f[i + 1][j] + 1;
                    p[i][j] = -2;
                }
                if ((s[j] == ')' || s[j] == ']') && f[i][j] > f[i][j - 1] + 1)
                {
                    f[i][j] = f[i][j - 1] + 1;
                    p[i][j] = -3;
                }
                if (((s[i] == '(' && s[j] == ')') || (s[i] == '[' && s[j] == ']')) && f[i][j] > f[i + 1][j - 1])
                {
                    f[i][j] = f[i + 1][j - 1];
                    p[i][j] = -1;
                }
                for (int k = i + 1; k <= j; ++k)
                    if (f[i][j] >= f[i][k - 1] + f[k][j])
                    {
                        f[i][j] = f[i][k - 1] + f[k][j];
                        p[i][j] = k;
                    }
            }
        print(0, n - 1);
        printf("
    ");
        return 0;
    }
  • 相关阅读:
    前端开发者进阶之ECMAScript新特性--Object.create
    JS事件:target与currentTarget区别
    30分钟掌握ES6/ES2015核心内容
    百度跨域搜索demo
    <a>标签的SEO优化细节
    jQuery之异步Ajax请求使用
    小tips: zoom和transform:scale的区别
    JSP页面静态化总结之一使用URLRewrite实现url地址伪静态化
    web前端安全机制问题全解析
    【转】Asp.net MVC Comet推送
  • 原文地址:https://www.cnblogs.com/albert7xie/p/4905949.html
Copyright © 2011-2022 走看看