zoukankan      html  css  js  c++  java
  • 【USACO 5.1.1】Fencing the Cows

    Fencing the Cows
    Hal Burch

    Farmer John wishes to build a fence to contain his cows, but he's a bit short on cash right. Any fence he builds must contain all of the favorite grazing spots for his cows. Given the location of these spots, determine the length of the shortest fence which encloses them.

    PROGRAM NAME: fc

    INPUT FORMAT

    The first line of the input file contains one integer, N. N (0 <= N <= 10,000) is the number of grazing spots that Farmer john wishes to enclose. The next N line consists of two real numbers, Xi and Yi, corresponding to the location of the grazing spots in the plane (-1,000,000 <= Xi,Yi <= 1,000,000). The numbers will be in decimal format.

    SAMPLE INPUT (file fc.in)

    4
    4 8
    4 12
    5 9.3
    7 8
    

    OUTPUT FORMAT

    The output should consists of one real number, the length of fence required. The output should be accurate to two decimal places.

    SAMPLE OUTPUT (file fc.out)

    12.00

    裸的凸包题目。
    不过我没有用Gift wraping.我用的是在《算法指南》上的Andrew.
    效果应该说差不多,相对来说我觉得Andrew好写.
    /*
    TASK:fc
    LANG:C++
    */
    
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #include <cmath>
    
    using namespace std;
    
    const int MAXN = 10005;
    const double EPS = 1e-10;
    
    struct Vertex
    {
        double x, y;
        
        Vertex() {
        }
        
        Vertex(double x0, double y0) : x(x0), y(y0) {
        }
        
        bool operator < (const Vertex &A) const
        {
            return x < A.x || (abs(x - A.x) <= EPS && y < A.y);
        }
        
        Vertex operator - (const Vertex &A)
        {
            return Vertex(x - A.x, y - A.y);
        }
        
    }v[MAXN], ch[MAXN];
    
    double Cross(Vertex A, Vertex B)
    {
        return A.x * B.y - A.y * B.x;
    }
    
    double sqr(double x)
    {
        return x * x;
    }
    
    double Distance(Vertex A, Vertex B)
    {
        return sqrt(sqr(A.x - B.x) + sqr(A.y - B.y));
    }
    
    int n;
    
    int main()
    {
        freopen("fc.in", "r", stdin);
        freopen("fc.out", "w", stdout);
        scanf("%d", &n);
        for (int i = 0; i < n; ++i)
            scanf("%lf%lf", &v[i].x, &v[i].y);
        sort(v, v + n);
        int m = 0;
        for (int i = 0; i < n; ++i)
        {
            while (m > 1 && Cross(ch[m - 1] - ch[m - 2], v[i] - ch[m - 2]) <= 0) m--;
            ch[m++] = v[i];
        }
        int k = m;
        for (int i = n - 2; i >= 0; --i)
        {
            while (m > k && Cross(ch[m - 1] - ch[m - 2], v[i] - ch[m - 2]) <= 0) m--;
            ch[m++] = v[i];
        }
        double ans = 0;
        for (int i = 0; i < m - 1; ++i)
            ans += Distance(ch[i], ch[i + 1]);
        printf("%.2lf
    ", ans);
        return 0;
    }
  • 相关阅读:
    博途Portal TIA(PLC) + Scout (独立)驱动配置 CU320 + PM240-2
    TM41 修改分辨率
    用户注册
    用户名的登录认证
    CSS
    HTML
    python常用模块
    面对对象进阶
    面对对象之绑定方法和非绑定方法
    面对对象之封装
  • 原文地址:https://www.cnblogs.com/albert7xie/p/4966809.html
Copyright © 2011-2022 走看看