1
目录
一、专业术语 & 公式
1. ground truth
标定好的真实数据(标准答案)
机器学习里经常出现ground truth这个词,能否准确解释一下? - 非理的回答 - 知乎
在有监督学习中,数据是有标注的,以((x, t))的形式出现,其中(x)是输入数据,(t)是标注。正确的
$t$
标注是 ground truth。
2. 准确率(Accuracy)、精确率(Precision),召回率(Recall)
参考:
准确率(Accuracy), 精确率(Precision), 召回率(Recall)和F1-Measure
首先引入基本概念:TP、FP、FN、TN
预测情况 | 相关(Relevant),正类 | 无关(NonRelevant),负类 |
---|---|---|
正类 | true positives (TP 正类判定为正类) | false positives (FP 负类判定为正类) |
负类 | false negatives (FN 正类判定为负类) | true negatives (TN 负类判定为负类) |
说明:
TP:T 判断正确,P 判断为正类
FP:F 判断错误,P 判断为正类,实际为负类
FN:F 判断错误,N 判断为负类,实际为正类
TN:T 判断正确,N 判断为负类
Accuracy:准确率,对于给定的测试数据集,分类器正确分类的样本数与总样本数之比。
公式表示如下:
对于 Precision 和 Recall 来说都是针对正类来考虑的,就是说我正类找的对不对、全不全。
Precision:精确率/查准率,在所有判断为正类的结果(TP、FP)中,判断正确(TP)所占的比例。
通俗理解:找的对不对,我找到的所有正类中对的比例
公示表示如下:
Recall:召回率/查全率,对于实际为正类(TP,FN)的所有内容中,判断正确(TP)所占的比例。
通俗理解:找的全不全,所有的正类被正确找到的比例
公式表示如下:
查准率:查的准不准,看看所有判断为正例中判断对的比例
查全率:查的全不全,看看所有的正例中被正确查到的比例
参考:
A:检索到的,相关的 (搜到的也想要的)
B:检索到的,但是不相关的 (搜到的但没用的)
C:未检索到的,但却是相关的 (没搜到,然而实际上想要的)
D:未检索到的,也不相关的 (没搜到也没用的)
3. arg max 与 arg min 函数
参考:argmin ,argmax函数
参考:arg max - wikipedia
arg max: arguments of the maxima,最大值对应的点集
arg min: arguments of the minima,最小值对应的点集
max:最大值
min:最小值
举例如下:
4. 行向量与列向量
参考:LaTeX输入单个点、横向多个点、竖向多个点、斜向多个点
行向量用逗号分隔
列向量用分号分隔
在教学书里面一般是按照列向量来表示。
行向量:(vec{y} = (y_1,y_2,y_3,...,y_m))
列向量:(vec{y} = (y_1;y_2;y_3;...;y_m))
行向量表示如下:
列向量表示如下:
5. 估计量 (widehat heta)
( heta) 的一个估计量记为(widehat{ heta})。对于 Wikipedia 里面的公式,显示是以图片的形式显示,但是复制的时候可以将其 LaTeX 源码复制出来。