LSTM(units=32, input_shape=(10, 64))
- units=32:输出神经元个数
- input_shape=(10, 64):输入数据形状,10 代表时间序列的长度,64 代表每个时间序列数据的维度
LSTM(units=32, input_dim=64, input_length=10)
- units=32:输出神经元个数
- input_dim=64:每个时间序列数据的维度
- input_length=10:时间序列的长度
☀☀☀<< 举例 >>☀☀☀
# as the first layer in a Sequential model model = Sequential() model.add(LSTM(32, input_shape=(10, 64))) # now model.output_shape == (None, 10, 32) # note: `None` is the batch dimension. # the following is identical: model = Sequential() model.add(LSTM(32, input_dim=64, input_length=10)) # for subsequent layers, not need to specify the input size: model.add(LSTM(16))
- return_sequences:布尔值,默认False,控制返回类型。若为True则返回整个序列,否则仅返回输出序列的最后一个输出
keras.layers.wrappers.Bidirectional(layer, merge_mode='concat', weights=None)
双向RNN包装器
参数
- layer:Recurrent对象
- merge_mode:前向和后向RNN输出的结合方式,为sum,mul,concat,ave和None之一,若设为None,则返回值不结合,而是以列表的形式返回
☀☀☀<< 举例 >>☀☀☀
model = Sequential() model.add(Bidirectional(LSTM(10, return_sequences=True), input_shape=(5, 10))) model.add(Bidirectional(LSTM(10))) model.add(Dense(5)) model.add(Activation('softmax')) model.compile(loss='categorical_crossentropy', optimizer='rmsprop')