zoukankan      html  css  js  c++  java
  • 【563】DBSCAN通过地理距离实现

      提前计算好地理距离矩阵,然后将函数名复制到DBSCAN的函数里面。

    import pandas as pd 
    import numpy as np 
    import folium
    from scipy.spatial import ConvexHull
    from math import radians, cos, sin, asin, sqrt
    from sklearn.cluster import DBSCAN
    
    def geodistance(lon1, lat1, lon2, lat2): # 经度1,纬度1,经度2,纬度2 (十进制度数)
        """
        大圆距离,great_circle
        Calculate the great circle distance between two points 
        on the earth (specified in decimal degrees)
        """
        # 将十进制度数转化为弧度
        lon1, lat1, lon2, lat2 = map(radians, [lon1, lat1, lon2, lat2])
     
        # haversine公式
        dlon = lon2 - lon1 
        dlat = lat2 - lat1 
        a = sin(dlat/2)**2 + cos(lat1) * cos(lat2) * sin(dlon/2)**2
        c = 2 * asin(sqrt(a)) 
        r = 6371 # 地球平均半径,单位为公里
        return c * r * 1000    
    
    def get_distance_matrix_from_array(points_array):
        """
        构建距离矩阵,每个点之间的 great_circle 距离
        """
        
        num = len(points_array)
        distance_matrix = np.zeros((num, num))
        for i in range(num):
            for j in range(num):
                if i == j:
                    continue
                lng1, lat1 = points_array[i]
                lng2, lat2 = points_array[j]
                dis = geodistance(lng1, lat1, lng2, lat2)
                distance_matrix[i][j] = dis
        return distance_matrix
    
    def DBSCAN_pts(aoi_points, eps, minpts):
        """
        minpts: 用数量作为计算
        aoi_points: 字典
        {'望京小区': [(0,1), (0,2), (1,2), (1,3)], ...}
        """
        for aoi, pts in aoi_points.items():
            distance_matrix = get_distance_matrix_from_array(pts)
            y_pred = DBSCAN(eps=eps, 
                          min_samples=minpts, 
                          metric='precomputed'
                         ).fit_predict(distance_matrix)
    
            # y_pred 的输出结果肯定有 -1,极端情况只有 -1
            # -1 的结果就是噪声点
            # 对于只有 -1 的情况,认为是点比较分散,无法聚类,是要删除掉的
    
            # 如果都为 -1,直接舍弃
            if len(set(y_pred.tolist())) == 1 and (y_pred[0] == -1):
                continue
    
            # 去掉 -1 的点
            tmp_pts = np.array(pts)[y_pred != -1]
            y_pred = y_pred[y_pred != -1]
    
            # 聚类点太少的簇可以删掉,初定为 5
            for i in range(y_pred.max() + 1):
                if list(y_pred).count(i) <= 5: 
                    tmp_pts = tmp_pts[y_pred != i]
                    y_pred = y_pred[y_pred != i] 
    
            aoi_points_dbscan_1[aoi] = tmp_pts.tolist()    
        
        return aoi_points_dbscan_1 
    
  • 相关阅读:
    Solr服务在Linux上的搭建详细教程
    Linux服务器上安装JDK小白教程
    request和response中文乱码问题后台处理办法
    Redis的五种数据类型及方法
    Java类装载器ClassLoader
    Git快速入门和常用命令
    redis在Linux上的部署和jedis简单使用
    Linux常用基础命令
    JDK1.7中HashMap底层实现原理
    微信电脑版无法显示图片无法下载文件
  • 原文地址:https://www.cnblogs.com/alex-bn-lee/p/14808599.html
Copyright © 2011-2022 走看看