参考:PyTorch 神经网络
实现下面这个网络:
- 第一层:卷积 5*5*6、ReLU、Max Pooling
- 第二层:卷积 5*5*16、ReLU、Max Pooling
- 第三层:Flatten、Linear NN
- 第四层:Linear NN
- 第五层:Linear NN
这是一个简单的前馈神经网络,它接收输入,让输入一个接着一个的通过一些层,最后给出输出。
一个典型的神经网络训练过程包括以下几点:
- 定义一个包含可训练参数的神经网络
- 迭代整个输入
- 通过神经网络处理输入
- 计算损失(loss)
- 反向传播梯度到神经网络的参数
- 更新网络的参数,典型的用一个简单的更新方法:weight = weight - learning_rate *gradient
定义神经网络:
import torch import torch.nn as nn import torch.nn.functional as F class Net(nn.Module): def __init__(self): super(Net, self).__init__() # 1 input image channel, 6 output channels, 5x5 square convolution kernel # 第一层 self.conv1 = nn.Conv2d(in_channels=1, out_channels=6, kernel_size=5) # 第二层 self.conv2 = nn.Conv2d(in_channels=6, out_channels=16, kernel_size=5) # an affine operation: y = Wx + b # 第三层 self.fc1 = nn.Linear(in_features=16 * 5 * 5, out_features=120) # 第四层 self.fc2 = nn.Linear(in_features=120, out_features=84) # 第五层 self.fc3 = nn.Linear(in_features=84, out_features=10) def forward(self, x): # 第一层 (conv1 -> relu -> max pooling) x = self.conv1(x) x = F.relu(x) # Max pooling over a (2, 2) window x = F.max_pool2d(x, (2, 2)) # 第二层 (conv2 -> relu -> max pooling) x = self.conv2(x) x = F.relu(x) # If the size is a square you can only specify a single number x = F.max_pool2d(x, 2) # 第三层 (fc -> relu) x = x.view(-1, self.num_flat_features(x)) x = self.fc1(x) x = F.relu(x) # 第四层 (fc -> relu) x = self.fc2(x) x = F.relu(x) # 第五层 (fc -> relu) x = self.fc3(x) x = F.relu(x) return x def num_flat_features(self, x): size = x.size()[1:] # all dimensions except the batch dimension num_features = 1 for s in size: num_features *= s return num_features net = Net() print(net)
输出:
Net( (conv1): Conv2d(1, 6, kernel_size=(5, 5), stride=(1, 1)) (conv2): Conv2d(6, 16, kernel_size=(5, 5), stride=(1, 1)) (fc1): Linear(in_features=400, out_features=120, bias=True) (fc2): Linear(in_features=120, out_features=84, bias=True) (fc3): Linear(in_features=84, out_features=10, bias=True) )
在Pytorch中训练模型包括以下几个步骤:
- 在每批训练开始时初始化梯度
- 前向传播
- 反向传播
- 计算损失并更新权重
import torch.optim as optim criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9) for epoch in range(2): # loop over the dataset multiple times running_loss = 0.0 for i, data in enumerate(trainloader, 0): # get the inputs inputs, labels = data # zero the parameter gradients optimizer.zero_grad() # forward + backward + optimize outputs = net(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() # print statistics running_loss += loss.item() if i % 2000 == 1999: # print every 2000 mini-batches print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 2000)) running_loss = 0.0 print('Finished Training')
通用
# 在数据集上循环多次 for epoch in range(2): for i, data in enumerate(trainloader, 0): # 获取输入; data是列表[inputs, labels] inputs, labels = data # (1) 初始化梯度 optimizer.zero_grad() # (2) 前向传播 outputs = net(inputs) loss = criterion(outputs, labels) # (3) 反向传播 loss.backward() # (4) 计算损失并更新权重 optimizer.step()