zoukankan      html  css  js  c++  java
  • 【600】Attention U-Net 解释

    参考:Attention-UNet for Pneumothorax Segmentation 

    参考:Attention U-Net


       Model 结构图

     

      以上为 Attention Gate 的原始结构图,可以按照下面的结构图进行理解:

    • 输入为 $x$(左边 up_sampling_2d_11)和 $g$(最上 conv2d_126)

    • $x$ 经过一个卷积、$g$ 经过一个卷积,然后两者做个加法

    • 之后连续的 ReLU、卷积、Sigmod,得到权重图片,如下图的 activation_19

    • 最后将 activation_19 与 $x$ 进行相乘,就完成了整个过程

      实现代码:

    from keras import Input 
    from keras.layers import Conv2D, Activation, UpSampling2D, Lambda, Dropout, MaxPooling2D, multiply, add
    from keras import backend as K 
    from keras.models import Model 
    
    IMG_CHANNEL = 3
    
    def AttnBlock2D(x, g, inter_channel, data_format='channels_first'):
    
        theta_x = Conv2D(inter_channel, [1, 1], strides=[1, 1], data_format=data_format)(x)
    
        phi_g = Conv2D(inter_channel, [1, 1], strides=[1, 1], data_format=data_format)(g)
    
        f = Activation('relu')(add([theta_x, phi_g]))
    
        psi_f = Conv2D(1, [1, 1], strides=[1, 1], data_format=data_format)(f)
    
        rate = Activation('sigmoid')(psi_f)
    
        att_x = multiply([x, rate])
    
        return att_x
    
    
    def attention_up_and_concate(down_layer, layer, data_format='channels_first'):
        
        if data_format == 'channels_first':
            in_channel = down_layer.get_shape().as_list()[1]
        else:
            in_channel = down_layer.get_shape().as_list()[3]
        
        up = UpSampling2D(size=(2, 2), data_format=data_format)(down_layer)
        layer = AttnBlock2D(x=layer, g=up, inter_channel=in_channel // 4, data_format=data_format)
    
        if data_format == 'channels_first':
            my_concat = Lambda(lambda x: K.concatenate([x[0], x[1]], axis=1))
        else:
            my_concat = Lambda(lambda x: K.concatenate([x[0], x[3]], axis=3))
        
        concate = my_concat([up, layer])
        return concate
    
    # Attention U-Net 
    def att_unet(img_w, img_h, n_label, data_format='channels_first'):
        # inputs = (3, 160, 160)
        inputs = Input((IMG_CHANNEL, img_w, img_h))
        x = inputs
        depth = 4
        features = 32
        skips = []
        # depth = 0, 1, 2, 3
        for i in range(depth):
            # ENCODER
            x = Conv2D(features, (3, 3), activation='relu', padding='same', data_format=data_format)(x)
            x = Dropout(0.2)(x)
            x = Conv2D(features, (3, 3), activation='relu', padding='same', data_format=data_format)(x)
            skips.append(x)
            x = MaxPooling2D((2, 2), data_format='channels_first')(x)
            features = features * 2
    
        # BOTTLENECK
        x = Conv2D(features, (3, 3), activation='relu', padding='same', data_format=data_format)(x)
        x = Dropout(0.2)(x)
        x = Conv2D(features, (3, 3), activation='relu', padding='same', data_format=data_format)(x)
    
        # DECODER
        for i in reversed(range(depth)):
            features = features // 2
            x = attention_up_and_concate(x, skips[i], data_format=data_format)
            x = Conv2D(features, (3, 3), activation='relu', padding='same', data_format=data_format)(x)
            x = Dropout(0.2)(x)
            x = Conv2D(features, (3, 3), activation='relu', padding='same', data_format=data_format)(x)
        
        conv6 = Conv2D(n_label, (1, 1), padding='same', data_format=data_format)(x)
        conv7 = Activation('sigmoid')(conv6)
        
        model = Model(inputs=inputs, outputs=conv7)
    
        return model
    
    IMG_WIDTH = 160
    IMG_HEIGHT = 160
    
    model = att_unet(IMG_WIDTH, IMG_HEIGHT, n_label=1)
    model.summary()
    
    from keras.utils.vis_utils import plot_model 
    plot_model(model, to_file='Att_U_Net.png', show_shapes=True)
    

       输出:

    Model: "model"
    __________________________________________________________________________________________________
    Layer (type)                    Output Shape         Param #     Connected to                     
    ==================================================================================================
    input_11 (InputLayer)           [(None, 3, 160, 160) 0                                            
    __________________________________________________________________________________________________
    conv2d_119 (Conv2D)             (None, 32, 160, 160) 896         input_11[0][0]                   
    __________________________________________________________________________________________________
    dropout_45 (Dropout)            (None, 32, 160, 160) 0           conv2d_119[0][0]                 
    __________________________________________________________________________________________________
    conv2d_120 (Conv2D)             (None, 32, 160, 160) 9248        dropout_45[0][0]                 
    __________________________________________________________________________________________________
    max_pooling2d_32 (MaxPooling2D) (None, 32, 80, 80)   0           conv2d_120[0][0]                 
    __________________________________________________________________________________________________
    conv2d_121 (Conv2D)             (None, 64, 80, 80)   18496       max_pooling2d_32[0][0]           
    __________________________________________________________________________________________________
    dropout_46 (Dropout)            (None, 64, 80, 80)   0           conv2d_121[0][0]                 
    __________________________________________________________________________________________________
    conv2d_122 (Conv2D)             (None, 64, 80, 80)   36928       dropout_46[0][0]                 
    __________________________________________________________________________________________________
    max_pooling2d_33 (MaxPooling2D) (None, 64, 40, 40)   0           conv2d_122[0][0]                 
    __________________________________________________________________________________________________
    conv2d_123 (Conv2D)             (None, 128, 40, 40)  73856       max_pooling2d_33[0][0]           
    __________________________________________________________________________________________________
    dropout_47 (Dropout)            (None, 128, 40, 40)  0           conv2d_123[0][0]                 
    __________________________________________________________________________________________________
    conv2d_124 (Conv2D)             (None, 128, 40, 40)  147584      dropout_47[0][0]                 
    __________________________________________________________________________________________________
    max_pooling2d_34 (MaxPooling2D) (None, 128, 20, 20)  0           conv2d_124[0][0]                 
    __________________________________________________________________________________________________
    conv2d_125 (Conv2D)             (None, 256, 20, 20)  295168      max_pooling2d_34[0][0]           
    __________________________________________________________________________________________________
    dropout_48 (Dropout)            (None, 256, 20, 20)  0           conv2d_125[0][0]                 
    __________________________________________________________________________________________________
    conv2d_126 (Conv2D)             (None, 256, 20, 20)  590080      dropout_48[0][0]                 
    __________________________________________________________________________________________________
    max_pooling2d_35 (MaxPooling2D) (None, 256, 10, 10)  0           conv2d_126[0][0]                 
    __________________________________________________________________________________________________
    conv2d_127 (Conv2D)             (None, 512, 10, 10)  1180160     max_pooling2d_35[0][0]           
    __________________________________________________________________________________________________
    dropout_49 (Dropout)            (None, 512, 10, 10)  0           conv2d_127[0][0]                 
    __________________________________________________________________________________________________
    conv2d_128 (Conv2D)             (None, 512, 10, 10)  2359808     dropout_49[0][0]                 
    __________________________________________________________________________________________________
    up_sampling2d_11 (UpSampling2D) (None, 512, 20, 20)  0           conv2d_128[0][0]                 
    __________________________________________________________________________________________________
    conv2d_129 (Conv2D)             (None, 128, 20, 20)  32896       conv2d_126[0][0]                 
    __________________________________________________________________________________________________
    conv2d_130 (Conv2D)             (None, 128, 20, 20)  65664       up_sampling2d_11[0][0]           
    __________________________________________________________________________________________________
    add_6 (Add)                     (None, 128, 20, 20)  0           conv2d_129[0][0]                 
                                                                     conv2d_130[0][0]                 
    __________________________________________________________________________________________________
    activation_18 (Activation)      (None, 128, 20, 20)  0           add_6[0][0]                      
    __________________________________________________________________________________________________
    conv2d_131 (Conv2D)             (None, 1, 20, 20)    129         activation_18[0][0]              
    __________________________________________________________________________________________________
    activation_19 (Activation)      (None, 1, 20, 20)    0           conv2d_131[0][0]                 
    __________________________________________________________________________________________________
    multiply_6 (Multiply)           (None, 256, 20, 20)  0           conv2d_126[0][0]                 
                                                                     activation_19[0][0]              
    __________________________________________________________________________________________________
    lambda_5 (Lambda)               (None, 768, 20, 20)  0           up_sampling2d_11[0][0]           
                                                                     multiply_6[0][0]                 
    __________________________________________________________________________________________________
    conv2d_132 (Conv2D)             (None, 256, 20, 20)  1769728     lambda_5[0][0]                   
    __________________________________________________________________________________________________
    dropout_50 (Dropout)            (None, 256, 20, 20)  0           conv2d_132[0][0]                 
    __________________________________________________________________________________________________
    conv2d_133 (Conv2D)             (None, 256, 20, 20)  590080      dropout_50[0][0]                 
    __________________________________________________________________________________________________
    up_sampling2d_12 (UpSampling2D) (None, 256, 40, 40)  0           conv2d_133[0][0]                 
    __________________________________________________________________________________________________
    conv2d_134 (Conv2D)             (None, 64, 40, 40)   8256        conv2d_124[0][0]                 
    __________________________________________________________________________________________________
    conv2d_135 (Conv2D)             (None, 64, 40, 40)   16448       up_sampling2d_12[0][0]           
    __________________________________________________________________________________________________
    add_7 (Add)                     (None, 64, 40, 40)   0           conv2d_134[0][0]                 
                                                                     conv2d_135[0][0]                 
    __________________________________________________________________________________________________
    activation_20 (Activation)      (None, 64, 40, 40)   0           add_7[0][0]                      
    __________________________________________________________________________________________________
    conv2d_136 (Conv2D)             (None, 1, 40, 40)    65          activation_20[0][0]              
    __________________________________________________________________________________________________
    activation_21 (Activation)      (None, 1, 40, 40)    0           conv2d_136[0][0]                 
    __________________________________________________________________________________________________
    multiply_7 (Multiply)           (None, 128, 40, 40)  0           conv2d_124[0][0]                 
                                                                     activation_21[0][0]              
    __________________________________________________________________________________________________
    lambda_6 (Lambda)               (None, 384, 40, 40)  0           up_sampling2d_12[0][0]           
                                                                     multiply_7[0][0]                 
    __________________________________________________________________________________________________
    conv2d_137 (Conv2D)             (None, 128, 40, 40)  442496      lambda_6[0][0]                   
    __________________________________________________________________________________________________
    dropout_51 (Dropout)            (None, 128, 40, 40)  0           conv2d_137[0][0]                 
    __________________________________________________________________________________________________
    conv2d_138 (Conv2D)             (None, 128, 40, 40)  147584      dropout_51[0][0]                 
    __________________________________________________________________________________________________
    up_sampling2d_13 (UpSampling2D) (None, 128, 80, 80)  0           conv2d_138[0][0]                 
    __________________________________________________________________________________________________
    conv2d_139 (Conv2D)             (None, 32, 80, 80)   2080        conv2d_122[0][0]                 
    __________________________________________________________________________________________________
    conv2d_140 (Conv2D)             (None, 32, 80, 80)   4128        up_sampling2d_13[0][0]           
    __________________________________________________________________________________________________
    add_8 (Add)                     (None, 32, 80, 80)   0           conv2d_139[0][0]                 
                                                                     conv2d_140[0][0]                 
    __________________________________________________________________________________________________
    activation_22 (Activation)      (None, 32, 80, 80)   0           add_8[0][0]                      
    __________________________________________________________________________________________________
    conv2d_141 (Conv2D)             (None, 1, 80, 80)    33          activation_22[0][0]              
    __________________________________________________________________________________________________
    activation_23 (Activation)      (None, 1, 80, 80)    0           conv2d_141[0][0]                 
    __________________________________________________________________________________________________
    multiply_8 (Multiply)           (None, 64, 80, 80)   0           conv2d_122[0][0]                 
                                                                     activation_23[0][0]              
    __________________________________________________________________________________________________
    lambda_7 (Lambda)               (None, 192, 80, 80)  0           up_sampling2d_13[0][0]           
                                                                     multiply_8[0][0]                 
    __________________________________________________________________________________________________
    conv2d_142 (Conv2D)             (None, 64, 80, 80)   110656      lambda_7[0][0]                   
    __________________________________________________________________________________________________
    dropout_52 (Dropout)            (None, 64, 80, 80)   0           conv2d_142[0][0]                 
    __________________________________________________________________________________________________
    conv2d_143 (Conv2D)             (None, 64, 80, 80)   36928       dropout_52[0][0]                 
    __________________________________________________________________________________________________
    up_sampling2d_14 (UpSampling2D) (None, 64, 160, 160) 0           conv2d_143[0][0]                 
    __________________________________________________________________________________________________
    conv2d_144 (Conv2D)             (None, 16, 160, 160) 528         conv2d_120[0][0]                 
    __________________________________________________________________________________________________
    conv2d_145 (Conv2D)             (None, 16, 160, 160) 1040        up_sampling2d_14[0][0]           
    __________________________________________________________________________________________________
    add_9 (Add)                     (None, 16, 160, 160) 0           conv2d_144[0][0]                 
                                                                     conv2d_145[0][0]                 
    __________________________________________________________________________________________________
    activation_24 (Activation)      (None, 16, 160, 160) 0           add_9[0][0]                      
    __________________________________________________________________________________________________
    conv2d_146 (Conv2D)             (None, 1, 160, 160)  17          activation_24[0][0]              
    __________________________________________________________________________________________________
    activation_25 (Activation)      (None, 1, 160, 160)  0           conv2d_146[0][0]                 
    __________________________________________________________________________________________________
    multiply_9 (Multiply)           (None, 32, 160, 160) 0           conv2d_120[0][0]                 
                                                                     activation_25[0][0]              
    __________________________________________________________________________________________________
    lambda_8 (Lambda)               (None, 96, 160, 160) 0           up_sampling2d_14[0][0]           
                                                                     multiply_9[0][0]                 
    __________________________________________________________________________________________________
    conv2d_147 (Conv2D)             (None, 32, 160, 160) 27680       lambda_8[0][0]                   
    __________________________________________________________________________________________________
    dropout_53 (Dropout)            (None, 32, 160, 160) 0           conv2d_147[0][0]                 
    __________________________________________________________________________________________________
    conv2d_148 (Conv2D)             (None, 32, 160, 160) 9248        dropout_53[0][0]                 
    __________________________________________________________________________________________________
    conv2d_149 (Conv2D)             (None, 1, 160, 160)  33          conv2d_148[0][0]                 
    __________________________________________________________________________________________________
    activation_26 (Activation)      (None, 1, 160, 160)  0           conv2d_149[0][0]                 
    ==================================================================================================
    Total params: 7,977,941
    Trainable params: 7,977,941
    Non-trainable params: 0
    __________________________________________________________________________________________________
    

       结构图如下:

  • 相关阅读:
    disruptor笔记之一:快速入门
    React-高阶函数_函数柯里化
    解决跨域、同源策略-React中代理的配置
    React中key的作用
    React三种路由参数传递方式
    React生命周期(好玩的讲解方式)
    React数据共享插件-PubSub
    React中路由基本&高级使用
    React中嵌套路由
    React中网络请求(axios和fetch)
  • 原文地址:https://www.cnblogs.com/alex-bn-lee/p/14978899.html
Copyright © 2011-2022 走看看