zoukankan      html  css  js  c++  java
  • 【613】U-Net 相关

    参考:keras遥感图像Unet语义分割(支持多波段&多类)

    参考:憨批的语义分割重制版5——Keras 搭建自己的Unet语义分割平台

    参考:U-net源码分析(Keras版本)

    参考:U-Net 源码 McDelfino / unet 【国内反而不稳定】

    参考:U-Net 源码 alexbnlee/unet【GitHub】


      通过 keras API 模型比较容易,有几种实现方式

    • 从头到尾实现,这个最直观简单

    • 通过 for 循环实现,有些重复的部分

    • 通过写函数构建不同的模块

      目前看来整个模型实现很容易,但是最开始接触的时候反而是看了很多资料都不太懂,归其原因是对于整体深度学习的理解还不是很到位。目前看来很多模型就是在 U-Net 基础上进行一些改进,包括增加 BatchNormalization 层,或者增加 ResNet 层,或者添加 Attention 层,怎么说呢,慢慢测试吧。

      U-Net 模型实现:

    import numpy as np 
    import os
    import skimage.io as io
    import skimage.transform as trans
    import numpy as np
    from keras.models import *
    from keras.layers import *
    from keras.optimizers import *
    from keras.callbacks import ModelCheckpoint, LearningRateScheduler
    from keras import backend as keras
    
    
    def unet(pretrained_weights = None,input_size = (256,256,1)):
        inputs = Input(input_size)
        conv1 = Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(inputs)
        conv1 = Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv1)
        pool1 = MaxPooling2D(pool_size=(2, 2))(conv1)
        conv2 = Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(pool1)
        conv2 = Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv2)
        pool2 = MaxPooling2D(pool_size=(2, 2))(conv2)
        conv3 = Conv2D(256, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(pool2)
        conv3 = Conv2D(256, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv3)
        pool3 = MaxPooling2D(pool_size=(2, 2))(conv3)
        conv4 = Conv2D(512, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(pool3)
        conv4 = Conv2D(512, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv4)
        drop4 = Dropout(0.5)(conv4)
        pool4 = MaxPooling2D(pool_size=(2, 2))(drop4)
    
        conv5 = Conv2D(1024, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(pool4)
        conv5 = Conv2D(1024, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv5)
        drop5 = Dropout(0.5)(conv5)
    
        up6 = Conv2D(512, 2, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(UpSampling2D(size = (2,2))(drop5))
        merge6 = concatenate([drop4,up6], axis = 3)
        conv6 = Conv2D(512, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(merge6)
        conv6 = Conv2D(512, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv6)
    
        up7 = Conv2D(256, 2, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(UpSampling2D(size = (2,2))(conv6))
        merge7 = concatenate([conv3,up7], axis = 3)
        conv7 = Conv2D(256, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(merge7)
        conv7 = Conv2D(256, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv7)
    
        up8 = Conv2D(128, 2, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(UpSampling2D(size = (2,2))(conv7))
        merge8 = concatenate([conv2,up8], axis = 3)
        conv8 = Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(merge8)
        conv8 = Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv8)
    
        up9 = Conv2D(64, 2, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(UpSampling2D(size = (2,2))(conv8))
        merge9 = concatenate([conv1,up9], axis = 3)
        conv9 = Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(merge9)
        conv9 = Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv9)
        conv9 = Conv2D(2, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv9)
        conv10 = Conv2D(1, 1, activation = 'sigmoid')(conv9)
    
        model = Model(input = inputs, output = conv10)
    
        model.compile(optimizer = Adam(lr = 1e-4), loss = 'binary_crossentropy', metrics = ['accuracy'])
        
        #model.summary()
    
        if(pretrained_weights):
        	model.load_weights(pretrained_weights)
    
        return model
    
  • 相关阅读:
    postgresql----UNION&&INTERSECT&&EXCEPT
    postgresql----JOIN之多表查询
    postgresql----ANY/SOME&&ALL
    在页面获取本地电脑IP
    redis-Jedis连接集群
    redis-存储命令
    redis-启用命令
    springboot-整合freemarker
    springboot-发布jar包
    springboot-实现log4j的AOP切面
  • 原文地址:https://www.cnblogs.com/alex-bn-lee/p/15019211.html
Copyright © 2011-2022 走看看