zoukankan      html  css  js  c++  java
  • 莫烦TensorFlow_06 plot可视化

    import tensorflow as tf  
    import numpy as np  
    import matplotlib.pyplot as plt  
      
    def add_layer(inputs, in_size, out_size, activation_function = None):  
      Weights = tf.Variable(tf.random_normal([in_size, out_size]))  # hang lie  
      biases = tf.Variable(tf.zeros([1, out_size]) + 0.1)  
      Wx_plus_b = tf.matmul(inputs, Weights) + biases  
      if activation_function is None:  
        outputs = Wx_plus_b  
      else:  
        outputs = activation_function(Wx_plus_b)  
      return outputs  
       
    x_data = np.linspace(-1,1,300)[:, np.newaxis]  
    noise  = np.random.normal(0, 0.05, x_data.shape)  
    y_data = np.square(x_data) - 0.5 + noise  
      
    #input layer 1   
    #hidden layer 10  
    #output layer 1  
      
    xs = tf.placeholder(tf.float32, [None, 1]) # 类似函数的定义  
    ys = tf.placeholder(tf.float32, [None, 1])  
      
    l1 = add_layer(xs, 1, 10, activation_function = tf.nn.relu)  
    prediction = add_layer(l1, 10, 1, activation_function = None)  
      
    loss = tf.reduce_mean(  
      tf.reduce_sum(  
        tf.square(ys - prediction),   
        reduction_indices=[1]  
        )  
      )  
      
    train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)  
      
    init = tf.initialize_all_variables()  
    sess = tf.Session()  
    sess.run(init)  
      
    #可视化  
    fig = plt.figure()  
    ax = fig.add_subplot(1,1,1)  
    ax.scatter(x_data, y_data)  
    plt.ion() # not frozen  
    plt.show() # block=False  
      
      
    for i in range(1000):  
      sess.run(train_step, feed_dict={xs:x_data, ys:y_data}) # 类似函数变量的输入  
      if i % 50 == 0:  
        #print(sess.run(loss, feed_dict={xs:x_data, ys:y_data}))  
        try:  
          ax.lines.remove(lines[0])  
        except Exception:  
          pass  
          
        prediction_value = sess.run(prediction,feed_dict={xs:x_data})  
        lines = ax.plot(x_data, prediction_value, 'r-', lw=5)  
          
        plt.pause(0.1)  
    

      

  • 相关阅读:
    c++实现单例
    shell查看并修复网络连接
    shell检测interface是否已分配ip,qt调用shell脚本
    ubuntu, Debian, CentOS
    Makefile 中:= ?= += =的区别
    我开新博客了
    soft lockup和hard lockup介绍
    linux系统奔溃之vmcore:kdump 的亲密战友 crash
    布局文件中的sp、dp还有px的区别
    kvmalloc函数
  • 原文地址:https://www.cnblogs.com/alexYuin/p/8684214.html
Copyright © 2011-2022 走看看