import tensorflow as tf from sklearn.datasets import load_digits from sklearn.cross_validation import train_test_split from sklearn.preprocessing import LabelBinarizer #load data digits = load_digits() X = digits.data y = digits.target y = LabelBinarizer().fit_transform(y) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.3) # # add layer # def add_layer(inputs, in_size, out_size, n_layer, activation_function = None): layer_name = 'layer%s' % n_layer Weights = tf.Variable(tf.random_normal([in_size, out_size]), name='W') # hang lie biases = tf.Variable(tf.zeros([1, out_size]) + 0.1, name = 'b') Wx_plus_b = tf.matmul(inputs, Weights) + biases Wx_plus_b = tf.nn.dropout(Wx_plus_b, keep_prob) # if activation_function is None: outputs = Wx_plus_b else: outputs = activation_function(Wx_plus_b) tf.summary.histogram(layer_name + '/outputs', outputs) return outputs # # define placeholder for inputs to network # keep_prob = tf.placeholder(tf.float32) # xs = tf.placeholder(tf.float32, [None, 64]) # 8x8 ys = tf.placeholder(tf.float32, [None, 10]) # # add output layer # l1 = add_layer(xs, 64, 50, 'l1', activation_function = tf.nn.tanh) prediction = add_layer(l1, 50, 10, 'l2', activation_function = tf.nn.softmax) # # the error between prediction and real data # cross_entropy = tf.reduce_mean(-tf.reduce_sum(ys * tf.log(prediction), reduction_indices=[1])) #loss tf.summary.scalar('loss', cross_entropy) train_step = tf.train.GradientDescentOptimizer(0.6).minimize(cross_entropy) sess = tf.Session() merged = tf.summary.merge_all() #summary writer goes here train_writer = tf.summary.FileWriter("logs/train", sess.graph) test_writer = tf.summary.FileWriter("logs/test", sess.graph) sess.run(tf.global_variables_initializer()) for i in range(500): #sess.run(train_step, feed_dict={xs:X_train, ys:y_train, keep_prob:1.0}) # overfitted sess.run(train_step, feed_dict={xs:X_train, ys:y_train, keep_prob:0.5}) # keep 0.5, drop 0.5 if i% 50 == 0: #record loss train_result = sess.run(merged, feed_dict={xs:X_train, ys:y_train, keep_prob:1}) test_result = sess.run(merged, feed_dict={xs:X_test, ys:y_test, keep_prob:1}) train_writer.add_summary(train_result, i) test_writer.add_summary(test_result, i)