zoukankan      html  css  js  c++  java
  • matlab 降维工具箱

    Matlab Toolbox for Dimensionality Reduction
     
    降维方法包括:
    1. Principal Component Analysis (PCA)

    2. • Probabilistic PCA

    3. • Factor Analysis (FA)

    4. • Sammon mapping

    5. • Linear Discriminant Analysis (LDA)

    6. • Multidimensional scaling (MDS)

    7. • Isomap

    8. • Landmark Isomap

    9. • Local Linear Embedding (LLE)

    10. • Laplacian Eigenmaps

    11. • Hessian LLE

    12. • Local Tangent Space Alignment (LTSA)

    13. • Conformal Eigenmaps (extension of LLE)

    14. • Maximum Variance Unfolding (extension of LLE)

    15. • Landmark MVU (LandmarkMVU)

    16. • Fast Maximum Variance Unfolding (FastMVU)

    17. • Kernel PCA

    18. • Generalized Discriminant Analysis (GDA)

    19. • Diffusion maps

    20. • Neighborhood Preserving Embedding (NPE)

    21. • Locality Preserving Projection (LPP)

    22. • Linear Local Tangent Space Alignment (LLTSA)

    23. • Stochastic Proximity Embedding (SPE)

    24. • Multilayer autoencoders (training by RBM + backpropagation or by an evolutionary algorithm)

    25. • Local Linear Coordination (LLC)

    26. • Manifold charting

    27. • Coordinated Factor Analysis (CFA)

    28. • Gaussian Process Latent Variable Model (GPLVM)

    29. • Stochastic Neighbor Embedding (SNE)

    30. • Symmetric SNE (SymSNE)

    31. • new: t-Distributed Stochastic Neighbor Embedding (t-SNE)

    32. • new: Neighborhood Components Analysis (NCA)

    33. • new: Maximally Collapsing Metric Learning (MCML)

       
  • 相关阅读:
    软件工程个人作业01
    阅读计划及浅读问题
    引言作业1
    多态和异常分析课后
    大道至简七八章阅读
    接口与继承 课后实践
    构建执法阅读笔记02
    冲刺第五天
    学习进度条七
    冲刺第四天
  • 原文地址:https://www.cnblogs.com/alexanderkun/p/3992168.html
Copyright © 2011-2022 走看看