zoukankan      html  css  js  c++  java
  • Perceptron Algorithm for Classification

    In classification tasks, we are given a training set T={X,t}, where X={xi} is the set of training data vectors and t={ti} is the set of vector labels.
        
        Linear classifiers use linear functions to model the mapping from input vector to output labels, that is, the classifier is defined as a function of linear combination of the input vector
        
        t=f(\sum_i x_i \theta_i) = f(x*\theta)
        
        In binary classification problems, $f$ is usually a sign function where
        
        f(y) = { +1, y >= 0;
                 {  -1, y < 0.

        Therefore

        x * \theta = 0

        defined a decision plane, theta is the normal vector of this plane. So the problem turns into finding the optimal decision plane, i.e. optimal theta to separate the training points according to their labels.
        
        We can use the number of classification mistakes as the evaluation metric for all the planes. Other metrics can also be used here. It is easy to observe that when we make a mistake t * f(x * \theta) < 0 which is equivalent to t x * \theta. So we hope to increase t x * \theta for all points that are mistakenly classified. Therefore, we maximize the loss function

            L = \sum_i t_i x_i * \theta

        
        The algorithm is to adapt theta for each mistakenly classified test point to increase the above target function. That is
        
        1. Repeat until convergence
        2.   For each training point (x, t)
        3.     If tx * theta < 0 (i.e. there is a mistake)
        4.       \theta <-- \theta + tx
        
        After each adaptation tx * theta will increase because

        tx*(\theta + tx) = tx * \theta + ||x||^2
                              >  tx * \theta
        
        This is the perceptron algorithm.
        
        After each adaptation, the \theta may be adjusted to perform better on the mistakenly classified training point, but other new mistakes may also appear. It is proved that this perceptron algorithm will converge when the points are linearly separable. Otherwise this algorithm may never converge.
  • 相关阅读:
    AMD平台如何使用Android Studio官方的高性能模拟器
    Nginx安装SSL证书,开启HTTPS加密
    【English】20190429
    【Teradata】TD Unicode编码格式下varchar定义测试
    【Teradata TTU】Windows TTU安装工具列表
    【English EMail】2019 Q2 Public Holiday Announcement
    【English】20190428
    【张东武 老架一路74式第一段】第二式 金刚捣碓
    【影音制作】编辑视频
    【Teradata SQL】多行转一列函数TDStats.udfConcat
  • 原文地址:https://www.cnblogs.com/alexdeblog/p/3119734.html
Copyright © 2011-2022 走看看