zoukankan      html  css  js  c++  java
  • Perceptron Algorithm for Classification

    In classification tasks, we are given a training set T={X,t}, where X={xi} is the set of training data vectors and t={ti} is the set of vector labels.
        
        Linear classifiers use linear functions to model the mapping from input vector to output labels, that is, the classifier is defined as a function of linear combination of the input vector
        
        t=f(\sum_i x_i \theta_i) = f(x*\theta)
        
        In binary classification problems, $f$ is usually a sign function where
        
        f(y) = { +1, y >= 0;
                 {  -1, y < 0.

        Therefore

        x * \theta = 0

        defined a decision plane, theta is the normal vector of this plane. So the problem turns into finding the optimal decision plane, i.e. optimal theta to separate the training points according to their labels.
        
        We can use the number of classification mistakes as the evaluation metric for all the planes. Other metrics can also be used here. It is easy to observe that when we make a mistake t * f(x * \theta) < 0 which is equivalent to t x * \theta. So we hope to increase t x * \theta for all points that are mistakenly classified. Therefore, we maximize the loss function

            L = \sum_i t_i x_i * \theta

        
        The algorithm is to adapt theta for each mistakenly classified test point to increase the above target function. That is
        
        1. Repeat until convergence
        2.   For each training point (x, t)
        3.     If tx * theta < 0 (i.e. there is a mistake)
        4.       \theta <-- \theta + tx
        
        After each adaptation tx * theta will increase because

        tx*(\theta + tx) = tx * \theta + ||x||^2
                              >  tx * \theta
        
        This is the perceptron algorithm.
        
        After each adaptation, the \theta may be adjusted to perform better on the mistakenly classified training point, but other new mistakes may also appear. It is proved that this perceptron algorithm will converge when the points are linearly separable. Otherwise this algorithm may never converge.
  • 相关阅读:
    OC基础5-NSString
    OC基础4
    OC基础3
    使用顺序表建立一个简单的学生管理系统
    二叉树的创建,遍历以及叶子结点数
    本地IP和主机IP
    双向链表的删除
    双向链表的查找及插入
    双向循环链表的建立
    单链表的合并
  • 原文地址:https://www.cnblogs.com/alexdeblog/p/3119734.html
Copyright © 2011-2022 走看看